Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazuhiko Himuro is active.

Publication


Featured researches published by Kazuhiko Himuro.


Annals of Nuclear Medicine | 2010

A simple table lookup method for PET/CT partial volume correction using a point-spread function in diagnosing lymph node metastasis

Yuichi Sakaguchi; Noriko Mizoguchi; Tatsuya Mitsumoto; Katsuhiko Mitsumoto; Kazuhiko Himuro; Nobuyoshi Ohya; Koichiro Kaneko; Shingo Baba; Koichiro Abe; Yoshihiko Onizuka; Masayuki Sasaki

ObjectiveWe evaluated the partial volume effect in PET/CT images and developed a simple correction method to address this problem.MethodsSix spheres and the background in the phantom were filled with F-18 and we thus obtained 4 different sphere-to-background (SB) ratios. Thirty-nine cervical lymph nodes in 7 patients with papillary thyroid carcinoma (15 malignant and 24 benign) were also examined as a preliminary clinical study. First, we developed recovery coefficient (RC) curves normalized to the maximum counts of the 37-mm sphere. Next, we developed a correction table to determine the true SB ratio using three parameters, including the maximum counts of both the sphere and background and the lesion diameter, by modifying the approximation formula of the RC curves including the point-spread function correction. The full width at half maximum in this formula is estimated with the function of the SB ratio.ResultsIn the phantom study, a size-dependent underestimation of the radioactivity was observed. The degree of decline of RC was influenced by the SB ratio. In preliminary clinical examination, the difference in the SUVmax between malignant and benign LNs thus became more prominent after the correction. The PV correction slightly improved the diagnostic accuracy from 95 to 100%.ConclusionsWe developed a simple table lookup correction method for the partial volume effect of PET/CT. This new method is considered to be clinically useful for the diagnosis of cervical LN metastasis. Further examination with a greater number of subjects is required to corroborate its clinical usefulness.


Medical Physics | 2015

Monte Carlo simulation of PET and SPECT imaging of 90Y

Akihiko Takahashi; Kazuhiko Himuro; Yasuo Yamashita; Isao Komiya; Shingo Baba; Masayuki Sasaki

PURPOSE Yittrium-90 ((90)Y) is traditionally thought of as a pure beta emitter, and is used in targeted radionuclide therapy, with imaging performed using bremsstrahlung single-photon emission computed tomography (SPECT). However, because (90)Y also emits positrons through internal pair production with a very small branching ratio, positron emission tomography (PET) imaging is also available. Because of the insufficient image quality of (90)Y bremsstrahlung SPECT, PET imaging has been suggested as an alternative. In this paper, the authors present the Monte Carlo-based simulation-reconstruction framework for (90)Y to comprehensively analyze the PET and SPECT imaging techniques and to quantitatively consider the disadvantages associated with them. METHODS Our PET and SPECT simulation modules were developed using Monte Carlo simulation of Electrons and Photons (MCEP), developed by Dr. S. Uehara. PET code (MCEP-PET) generates a sinogram, and reconstructs the tomography image using a time-of-flight ordered subset expectation maximization (TOF-OSEM) algorithm with attenuation compensation. To evaluate MCEP-PET, simulated results of (18)F PET imaging were compared with the experimental results. The results confirmed that MCEP-PET can simulate the experimental results very well. The SPECT code (MCEP-SPECT) models the collimator and NaI detector system, and generates the projection images and projection data. To save the computational time, the authors adopt the prerecorded (90)Y bremsstrahlung photon data calculated by MCEP. The projection data are also reconstructed using the OSEM algorithm. The authors simulated PET and SPECT images of a water phantom containing six hot spheres filled with different concentrations of (90)Y without background activity. The amount of activity was 163 MBq, with an acquisition time of 40 min. RESULTS The simulated (90)Y-PET image accurately simulated the experimental results. PET image is visually superior to SPECT image because of the low background noise. The simulation reveals that the detected photon number in SPECT is comparable to that of PET, but the large fraction (approximately 75%) of scattered and penetration photons contaminates SPECT image. The lower limit of (90)Y detection in SPECT image was approximately 200 kBq/ml, while that in PET image was approximately 100 kBq/ml. CONCLUSIONS By comparing the background noise level and the image concentration profile of both the techniques, PET image quality was determined to be superior to that of bremsstrahlung SPECT. The developed simulation codes will be very useful in the future investigations of PET and bremsstrahlung SPECT imaging of (90)Y.


Journal of Nuclear Medicine Technology | 2015

An Anthropomorphic Phantom Study of Brain Dopamine Transporter SPECT Images Obtained Using Different SPECT/CT Devices and Collimators

Akira Maebatake; Maho Sato; Ruriko Kagami; Yasuo Yamashita; Isao Komiya; Kazuhiko Himuro; Shingo Baba; Masayuki Sasaki

The aim of this study was to evaluate differences in dopamine transporter SPECT images among different SPECT/CT devices and to determine the most appropriate region of interest (ROI) for semiquantitative evaluation. Methods: An anthropomorphic striatal phantom was filled with 123I solutions of different striatum-to-background radioactivity ratios. Data were acquired using 2 SPECT/CT devices equipped with low- to medium-energy general-purpose and low-energy high-resolution (LEHR) collimators. The SPECT images were reconstructed by filtered backprojection with both attenuation and scatter correction and then were analyzed using specific binding ratio (SBR). The most appropriate of 7 ROI types was determined, and we then compared the linearity and recovery of SBR among the different SPECT/CT devices and collimators. Results: The linearity of SBR was excellent for all types of ROIs. The ROI contouring the striatum based on the CT images showed the best recovery of SBR using mean activity in the striatal ROI (SBRmean) (47.8%). For this ROI, the recovery of SBRmean for SPECT/CT with a LEHR collimator with thick septa and a long hole length was 61.6%—significantly higher than that of other devices. Conclusion: The ROI contouring the striatum based on CT images was considered appropriate for evaluating dopamine transporter SPECT/CT. Among the different SPECT/CT devices, an LEHR collimator designed for 123II imaging is recommended.


Asia Oceania journal of nuclear medicine & biology | 2016

Evaluation of Iterative Reconstruction Method and Attenuation Correction in Brain Dopamine Transporter SPECT Using an Anthropomorphic Striatal Phantom

Akira Maebatake; Ayaka Imamura; Yui Kodera; Yasuo Yamashita; Kazuhiko Himuro; Shingo Baba; Kenta Miwa; Masayuki Sasaki

Objective(s): The aim of this study was to determine the optimal reconstruction parameters for iterative reconstruction in different devices and collimators for dopamine transporter (DaT) single-photon emission computed tomography (SPECT). The results were compared between filtered back projection (FBP) and different attenuation correction (AC) methods. Methods: An anthropomorphic striatal phantom was filled with 123I solutions at different striatum-to-background radioactivity ratios. Data were acquired using two SPECT/CT devices, equipped with a low-to-medium-energy general-purpose collimator (cameras A-1 and B-1) and a low-energy high-resolution (LEHR) collimator (cameras A-2 and B-2). The SPECT images were once reconstructed by FBP using Chang’s AC and once by ordered subset expectation maximization (OSEM) using both CTAC and Chang’s AC; moreover, scatter correction was performed. OSEM on cameras A-1 and A-2 included resolution recovery (RR). The images were analyzed, using the specific binding ratio (SBR). Regions of interest for the background were placed on both frontal and occipital regions. Results: The optimal number of iterations and subsets was 10i10s on camera A-1, 10i5s on camera A-2, and 7i6s on cameras B-1 and B-2. The optimal full width at half maximum of the Gaussian filter was 2.5 times the pixel size. In the comparison between FBP and OSEM, the quality was superior on OSEM-reconstructed images, although edge artifacts were observed in cameras A-1 and A-2. The SBR recovery of OSEM was higher than that of FBP on cameras A-1 and A-2, while no significant difference was detected on cameras B-1 and B-2. Good linearity of SBR was observed in all cameras. In the comparison between Chang’s AC and CTAC, a significant correlation was observed on all cameras. The difference in the background region influenced SBR differently in Chang’s AC and CTAC on cameras A-1 and B-1. Conclusion: Iterative reconstruction improved image quality on all cameras, although edge artifacts were observed in images captured by cameras with RR. The SBR of OSEM with RR was higher than that of FBP, while the SBR of OSEM without RR was equal to that of FBP. Also, the SBR of Chang’s AC varied with different background regions in cameras A-1 and B-1.


Journal of Nuclear Medicine Technology | 2018

Time-of-flight information improved the detectability of sub-centimeter sphere using clinical positron emission tomography/computed tomography scanner

Naoki Hashimoto; Keishin Morita; Yuji Tsutsui; Kazuhiko Himuro; Shingo Baba; Masayuki Sasaki

Recent advancements in clinical PET/CT scanners have improved the detectability of small lesions. However, the ideal reconstruction parameters for detecting small lesions have not yet been sufficiently clarified. The purpose of this study was to investigate the detectability of subcentimeter spheres using a clinical PET/CT scanner. Methods: We used a clinical PET/CT scanner to obtain the data of a National Electrical Manufacturers Association body phantom consisting of 6 small spheres (inner diameters, 4.0, 5.0, 6.2, 7.9, 10, and 37 mm) containing 18F solution. The background activity was 2.65 kBq/mL, and the sphere-to-background ratio was 8. The PET data obtained for 2 and 120 min were reconstructed using ordered-subsets expectation maximization (OSEM), OSEM + point-spread function (PSF), and OSEM + time-of-flight (TOF) with voxel sizes of 2.04 × 2.04 × 2.00 mm (2-mm voxels) and 4.07 × 4.07 × 3.99 mm (4-mm voxels). A gaussian filter was not used. The image quality was evaluated by visual assessment, as well as by physical assessment of the detectability index and recovery coefficients. Results: According to the visual assessment, the detectability of the spheres improved using TOF and a longer acquisition. Using the OSEM+TOF model, the smallest visually detected spheres were 5 mm in diameter with a 120-min acquisition and 6 mm in diameter with a 2-min acquisition. According to physical assessment, the detectability of spheres 10 mm or smaller using the OSEM+TOF image was superior to that using the OSEM image. In addition, the detectability of each hot sphere and recovery coefficient with 2-mm voxels was superior to that with 4-mm voxels. Although OSEM+PSF images showed less background noise, detectability and the recovery coefficient were not improved for spheres 8 mm or smaller. Conclusion: The TOF model with 2-mm voxels improved the detectability of subcentimeter hot spheres on a clinical PET/CT scanner.


Asia Oceania journal of nuclear medicine & biology | 2018

Comparison of TOF-PET and Bremsstrahlung SPECT images of Yttrium-90: A Monte Carlo Simulation Study

Akihiko Takahashi; Kazuhiko Himuro; Shingo Baba; Yasuo Yamashita; Masayuki Sasaki

Objective(s): Yttrium-90 (90Y) is a beta particle nuclide used in targeted radionuclide therapy which is available to both single-photon emission computed tomography (SPECT) and time-of-flight (TOF) positron emission tomography (PET) imaging. The purpose of this study was to assess the image quality of PET and Bremsstrahlung SPECT by simulating PET and SPECT images of 90Y using Monte Carlo simulation codes under the same conditions and to compare them. Methods: In-house Monte Carlo codes, MCEP-PET and MCEP-SPECT, were employed to simulate images. The phantom was a torso-shaped phantom containing six hot spheres of various sizes. The background concentrations of 90Y were set to 50, 100, 150, and 200 kBq/mL, and the concentrations of the hot spheres were 10, 20, and 40 times of those of the background concentrations. The acquisition time was set to 30 min, and the simulated sinogram data were reconstructed using the ordered subset expectation maximization method. The contrast recovery coefficient (CRC) and contrast-to-noise ratio (CNR) were employed to evaluate the image qualities. Results: The CRC values of SPECT images were less than 40%, while those of PET images were more than 40% when the hot sphere was larger than 20 mm in diameter. The CNR values of PET images of hot spheres of diameter smaller than 20 mm were larger than those of SPECT images. The CNR values mostly exceeded 4, which is a criterion to evaluate the discernibility of hot areas. In the case of SPECT, hot spheres of diameter smaller than 20 mm were not discernable. On the contrary, the CNR values of PET images decreased to the level of SPECT, in the case of low concentration. Conclusion: In almost all the cases examined in this investigation, the quantitative indexes of TOF-PET 90Y images were better than those of Bremsstrahlung SPECT images. However, the superiority of PET image became critical in the case of low activity concentrations.


Asia Oceania journal of nuclear medicine & biology | 2018

Evaluation of the Reconstruction Parameters of Brain Dopamine Transporter SPECT Images Obtained by a Fan Beam Collimator: A Comparison with Parallel-hole Collimators

Keishin Morita; Akira Maebatake; Rina Iwasaki; Yuki Shiotsuki; Kazuhiko Himuro; Shingo Baba; Masayuki Sasaki

Objective(s): The purpose of this study was to examine the optimal reconstruction parameters for brain dopamine transporter SPECT images obtained with a fan beam collimator and compare the results with those obtained by using parallel-hole collimators. Methods: Data acquisition was performed using two SPECT/CT devices, namely a Symbia T6 and an Infinia Hawkeye 4 (device A and B) equipped with fan-beam (camera A-1 and B-1), low- and medium-energy general-purpose (camera A-2 and B-2), and low-energy high-resolution (camera A-3 and B-3) collimators. The SPECT images were reconstructed using filtered back projection (FBP) with Chang’s attenuation correction. However, the scatter correction was not performed. A pool phantom and a three-dimensional (3D) brain phantom were filled with 123I solution to examine the reconstruction parameters. The optimal attenuation coefficient was based on the visual assessment of the profile curve, coefficient of variation (CV) [%], and summed difference from the reference activity of the pool phantom. The optimal Butterworth filter for the 3D-brain phantom was also determined based on a visual assessment. The anthropomorphic striatal phantom was filled with 123I solution at striatum-to-background radioactivity ratios of 8, 6, 4, and 3. The specific binding ratio (SBR) of the striatum (calculated by the CT method) was used to compare the results with those of the parallel-hole collimators. Results: The optimal attenuation coefficients were 0.09, 0.11, 0.05, 0.05, 0.11, and, 0.10 cm-1 for cameras A-1, A-2, A-3, B-1, B-2, and B-3, respectively. The cutoff frequencies of the Butterworth filter were 0.32, 0.40, and 0.36 cycles/cm for camera A, and 0.46, 0.44, and 0.44 cycles/cm for camera B, respectively. The recovery rates of the SBRmean with camera A were 51.2%, 49.4%, and 45.6%, respectively. The difference was not statistically significant. The recovery rates of the SBR with camera B were 59.2%, 50.7%, and 50.8%, respectively. Camera B-1 showed significantly high SBR values. Conclusion: As the findings indicated, the optimal reconstruction parameters differed according to the devices and collimators. The fan beam collimator was found to provide promising results with each device.


Asia Oceania journal of nuclear medicine & biology | 2018

Characteristics of Smoothing Filters to Achieve the Guideline Recommended Positron Emission Tomography Image without Harmonization

Yuji Tsutsui; Shinichi Awamoto; Kazuhiko Himuro; Yoshiyuki Umezu; Shingo Baba; Masayuki Sasaki

Objective(s): The aim of this study is to examine the effect of different smoothing filters on the image quality and SUVmax to achieve the guideline recommended positron emission tomography (PET) image without harmonization. Methods: We used a Biograph mCT PET scanner. A National Electrical Manufacturers Association (NEMA) the International Electrotechnical Commission (IEC) body phantom was filled with 18F solution with a background activity of 2.65 kBq/mL and a sphere-to-background ratio of 4. PET images obtained with the Biograph mCT PET scanner were reconstructed using the ordered subsets-expectation maximization (OSEM) algorithm with time-of-flight (TOF) models (iteration, 2; subset, 21); smoothing filters including the Gaussian, Butterworth, Hamming, Hann, Parzen, and Shepp-Logan filters with various full width at half maximum (FWHM) values (1-15 mm) were applied. The image quality was physically assessed according to the percent contrast (QH,10), background variability (N10), standardized uptake value (SUV), and recovery coefficient (RC). The results were compared with the guideline recommended range proposed by the Japanese Society of Nuclear Medicine and the Japanese Society of Nuclear Medicine Technology. The PET digital phantom was developed from the digital reference object (DRO) of the NEMA IEC body phantom smoothed using a Gaussian filter with a 10-mm FWHM and defined as the reference image. The difference in the SUV between the PET image and the reference image was evaluated according to the root mean squared error (RMSE). Results: The FWHMs of the Gaussian, Butterworth, Hamming, Hann, Parzen, and Shepp-Logan filters that satisfied the image quality of the FDG-PET/CT standardization guideline criteria were 8-12 mm, 9-11 mm, 9-13 mm, 10-13 mm, 9-11 mm, and 12-15 mm, respectively. The FWHMs of the Gaussian, Butterworth, Hamming, Hann, Parzen, and Shepp-Logan filters that provided the smallest RMSE between the PET images and the 3D digital phantom were 7 mm, 8 mm, 8 mm, 8 mm, 7 mm, and 11 mm, respectively. Conclusion: The suitable FWHM for image quality or SUVmax depends on the type of smoothing filter that is applied.


Asia Oceania journal of nuclear medicine & biology | 2017

Edge Artifacts in Point Spread Function-based PET Reconstruction in Relation to Object Size and Reconstruction Parameters

Yuji Tsutsui; Shinichi Awamoto; Kazuhiko Himuro; Yoshiyuki Umezu; Shingo Baba; Masayuki Sasaki

Objective(s): We evaluated edge artifacts in relation to phantom diameter and reconstruction parameters in point spread function (PSF)-based positron emission tomography (PET) image reconstruction. Methods: PET data were acquired from an original cone-shaped phantom filled with 18F solution (21.9 kBq/mL) for 10 min using a Biograph mCT scanner. The images were reconstructed using the baseline ordered subsets expectation maximization (OSEM) algorithm and the OSEM with PSF correction model. The reconstruction parameters included a pixel size of 1.0, 2.0, or 3.0 mm, 1-12 iterations, 24 subsets, and a full width at half maximum (FWHM) of the post-filter Gaussian filter of 1.0, 2.0, or 3.0 mm. We compared both the maximum recovery coefficient (RCmax) and the mean recovery coefficient (RCmean) in the phantom at different diameters. Results: The OSEM images had no edge artifacts, but the OSEM with PSF images had a dense edge delineating the hot phantom at diameters 10 mm or more and a dense spot at the center at diameters of 8 mm or less. The dense edge was clearly observed on images with a small pixel size, a Gaussian filter with a small FWHM, and a high number of iterations. At a phantom diameter of 6-7 mm, the RCmax for the OSEM and OSEM with PSF images was 60% and 140%, respectively (pixel size: 1.0 mm; FWHM of the Gaussian filter: 2.0 mm; iterations: 2). The RCmean of the OSEM with PSF images did not exceed 100%. Conclusion: PSF-based image reconstruction resulted in edge artifacts, the degree of which depends on the pixel size, number of iterations, FWHM of the Gaussian filter, and object size.


Asia Oceania journal of nuclear medicine & biology | 2017

The Efficiency of Respiratory-gated 18F-FDG PET/CT in Lung Adenocarcinoma: Amplitude-gating Versus Phase-gating Methods

Yoshiyuki Kitamura; Shingo Baba; Takuro Isoda; Yasuhiro Maruoka; Satoshi Kawanami; Kazuhiko Himuro; Masayuki Sasaki; Hiroshi Honda

Objective(s): In positron emission tomography (PET) studies, thoracic movement under free-breathing conditions is a cause of image degradation. Respiratory gating (RG) is commonly used to solve this problem. Two different methods, i.e., phase-gating (PG) and amplitude-gating (AG) PET, are available for respiratory gating. It is important to know the strengths and weaknesses of both methods when selecting an RG method for a given patient. We conducted this study to clarify whether AG or PG is preferable for measuring fluorodeoxyglucose (FDG) accumulation in lung adenocarcinoma and to investigate patient conditions which are most suitable for AG and PG methods. Methods: A total of 31 patients (11 males, 20 females; average age: 70.1±11.6 yrs) with 44 lung lesions, diagnosed as lung adenocarcinoma between April 2012 and March 2013, were investigated. Whole-body FDG-PET/CT scan was performed with both PG and AG methods in all patients. The maximum standardized uptake value (SUVmax) of PG, AG, and the control data of these two methods were measured, and the increase ratio (IR), calculated as IR(%)= (Post – Pre)/Pre × 100, was calculated. The diameter and position of lung lesions were also analyzed. We defined an ‘effective lesion’ of PG (or AG) as a lesion which showed a higher IR compared to AG (or PG). 8 (25.8%) Results: The average SUVmax and average IR were 8.99±7.94 and %21.4±25.6 in PG and 7.60±6.70 and %4.0±14.4 in AG, respectively. Although there was no significant difference between the average SUVmax of PG and AG (P=0.09), the average IR of PG was significantly higher than that of AG (P<0.01). The number of PG- and AG-effective lesions was 32 (72.7%) and 12 (28.3%), respectively. There was no significant difference in the average diameter or position of the lesions between the PG- and AG-effective lesions. There were 23 (74.2%) PG-effective and 8 (25.8%) AG-effective patients. No significant difference was observed in sex or age between PG- and AG-effective patients. Conclusion: The PG method was more effective for measuring FDG accumulation of lung lesions under free-breathing conditions in comparison with the AG method.

Collaboration


Dive into the Kazuhiko Himuro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge