Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazuhiko Kurozumi is active.

Publication


Featured researches published by Kazuhiko Kurozumi.


Gene Therapy | 2004

Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model

Kiminori Nakamura; Yoshinori Ito; Yutaka Kawano; Kazuhiko Kurozumi; Masayoshi Kobune; Hajime Tsuda; Akiko Bizen; Osamu Honmou; Yoshiro Niitsu; Hirofumi Hamada

The prognosis of patients with malignant glioma is extremely poor, despite the extensive surgical treatment that they receive and recent improvements in adjuvant radio- and chemotherapy. In the present study, we propose the use of gene-modified mesenchymal stem cells (MSCs) as a new tool for gene therapy of malignant brain neoplasms. Primary MSCs isolated from Fischer 344 rats possessed excellent migratory ability and exerted inhibitory effects on the proliferation of 9L glioma cell in vitro. We also confirmed the migratory capacity of MSCs in vivo and showed that when they were inoculated into the contralateral hemisphere, they migrated towards 9L glioma cells through the corpus callosum. MSCs implanted directly into the tumor localized mainly at the border between the 9L tumor cells and normal brain parenchyma, and also infiltrated into the tumor bed. Intratumoral injection of MSCs caused significant inhibition of 9L tumor growth and increased the survival of 9L glioma-bearing rats. Gene-modification of MSCs by infection with an adenoviral vector encoding human interleukin-2 (IL-2) clearly augmented the antitumor effect and further prolonged the survival of tumor-bearing rats. Thus, gene therapy employing MSCs as a targeting vehicle would be promising as a new therapeutic approach for refractory brain tumor.


Molecular Therapy | 2008

Histone Deacetylase Inhibitors Augment Antitumor Efficacy of Herpes-based Oncolytic Viruses

Akihiro Otsuki; Ankita Patel; Kazue Kasai; Masataka Suzuki; Kazuhiko Kurozumi; E. Antonio Chiocca; Yoshinaga Saeki

Replication-conditional (oncolytic) mutants of herpes simplex virus (HSV), are considered promising therapeutic alternatives for human malignancies, and chemotherapeutic adjuvants are increasingly sought to augment their efficacy. Histone deacetylase (HDAC) inhibitors are a new class of antineoplastic agents because of their potent activity in growth arrest, differentiation, and apoptotic death of cancer cells. The ability of the HDAC inhibitors to upregulate exogenous transgene expression and inhibit interferon (IFN) responses prompted our exploration of their use in improving the antitumor efficacy of oncolytic HSV. We discovered that the yield of viral progeny increased significantly when cultured glioma cells were treated with HDAC inhibitors before viral infection. Valproic acid (VPA), a commonly used antiepileptic agent with HDAC inhibitory activity, proved most effective when used to treat glioma cells before viral infection, but not concomitantly with viral infection. Pretreatment with VPA inhibited the induction of several IFN-responsive antiviral genes, augmented the transcriptional level of viral genes, and improved viral propagation, even in the presence of type I IFNs. Moreover, VPA pretreatment improved the propagation and therapeutic efficacy of oncolytic HSV in a human glioma xenograft model in vivo. These findings indicate that HDAC inhibitors can improve the efficacy of tumor virotherapies.Replication-conditional (oncolytic) mutants of herpes simplex virus (HSV), are considered promising therapeutic alternatives for human malignancies, and chemotherapeutic adjuvants are increasingly sought to augment their efficacy. Histone deacetylase (HDAC) inhibitors are a new class of antineoplastic agents because of their potent activity in growth arrest, differentiation, and apoptotic death of cancer cells. The ability of the HDAC inhibitors to upregulate exogenous transgene expression and inhibit interferon (IFN) responses prompted our exploration of their use in improving the antitumor efficacy of oncolytic HSV. We discovered that the yield of viral progeny increased significantly when cultured glioma cells were treated with HDAC inhibitors before viral infection. Valproic acid (VPA), a commonly used antiepileptic agent with HDAC inhibitory activity, proved most effective when used to treat glioma cells before viral infection, but not concomitantly with viral infection. Pretreatment with VPA inhibited the induction of several IFN-responsive antiviral genes, augmented the transcriptional level of viral genes, and improved viral propagation, even in the presence of type I IFNs. Moreover, VPA pretreatment improved the propagation and therapeutic efficacy of oncolytic HSV in a human glioma xenograft model in vivo. These findings indicate that HDAC inhibitors can improve the efficacy of tumor virotherapies.


Brain Research | 2008

Embryonic neural stem cells transplanted in middle cerebral artery occlusion model of rats demonstrated potent therapeutic effects, compared to adult neural stem cells

Kazuya Takahashi; Takao Yasuhara; Tetsuro Shingo; Kenichiro Muraoka; Masahiro Kameda; Akira Takeuchi; Akimasa Yano; Kazuhiko Kurozumi; Takashi Agari; Yasuyuki Miyoshi; Kazushi Kinugasa; Isao Date

Cell therapy using stem cells is awaited by stroke patients with impaired movement and cognitive functions, although intravenous alteplase-administration ameliorated outcomes of patients receiving the therapy within 3 h of onset. In this study, we explored the therapeutic effects of neural progenitor cells (NPC) upon middle cerebral artery occlusion (MCAO) model of rats with exploration of the differences between adult and embryonic NPCs in therapeutic effects. GFP-labeled adult or embryonic NPCs were transplanted for transient MCAO model of rats at 1h after reperfusion. Rats were examined behaviorally using limb placement test, rotarod test and cylinder test with neuroradiological assessment using magnetic resonance imaging (MRI). Consequently after euthanasia, rats were immunohistochemically investigated to explore graft survival and immune reaction. MRI of rats receiving NPCs revealed significant reduction of infarct volumes, compared to vehicle-treated rats with corresponding behavioral amelioration. The transplanted cells were surviving in rats receiving NPCs, although the number of embryonic NPCs was significantly higher than that of adult NPCs. Iba-1-positive inflammatory cells of rats receiving adult NPCs were prominent, compared to those receiving embryonic NPCs, which might be a rationale for the differences between rats receiving adult and embryonic NPCs in the number of surviving NPCs. On the contraries, adult NPCs surely demonstrated therapeutic effects with a few surviving cells, thus indicating that the therapeutic effects might be due to trophic/growth factor-secretion from transplanted NPCs, rather than replacement of damaged host neurons. Therapeutic effects of NPCs for MCAO model of rats were clarified in this study. Transplantation of NPCs will be a hopeful strategy for stroke patients, although further studies are required for the patient safety and underlying mechanisms.


European Journal of Neuroscience | 2007

Adult neural stem and progenitor cells modified to secrete GDNF can protect, migrate and integrate after intracerebral transplantation in rats with transient forebrain ischemia

Masahiro Kameda; Tetsuro Shingo; Kazuya Takahashi; Kenichiro Muraoka; Kazuhiko Kurozumi; Takao Yasuhara; Tomoko Maruo; T. Tsuboi; Takashi Uozumi; Toshihiro Matsui; Yasuyuki Miyoshi; Hirofumi Hamada; Isao Date

Adult neural stem and progenitor cells (NSPCs) are important autologous transplantation tools in regenerative medicine, as they can secrete factors that protect the ischemic brain. We investigated whether adult NSPCs genetically modified to secrete more glial cell line‐derived neurotrophic factor (GDNF) could protect against transient ischemia in rats. NSPCs were harvested from the subventricular zone of adult Wistar rats and cultured for 3 weeks in the presence of epidermal growth factor. The NSPCs were treated with fibre‐mutant Arg‐Gly‐Asp adenovirus containing the GDNF gene (NSPC‐GDNF) or enhanced green fluorescent protein (EGFP) gene (NSPC‐EGFP; control group). In one experiment, cultured cells were transplanted into the right ischemic boundary zone of Wistar rat brains. One week later, animals underwent 90 min of intraluminal right middle cerebral artery occlusion followed by magnetic resonance imaging and behavioural tests. The NSPC‐GDNF group had higher behavioural scores and lesser infarct volume than did controls at 1, 7 and 28 days postocclusion. In the second experiment, we transplanted NSPCs 3 h after ischemic insult. Compared to controls, rats receiving NSPC‐GDNF had decreased infarct volume and better behavioural assessments at 7 days post‐transplant. Animals were killed on day 7 and brains were collected for GDNF ELISA and morphological assessment. Compared to controls, more GDNF was secreted, more NSPC‐GDNF cells migrated toward the ischemic core and more NSPC‐GDNF cells expressed immature neuronal marker. Moreover, the NSPC‐GDNF group showed more effective inhibition of microglial invasion and apoptosis. These findings suggest that NSPC‐GDNF may be useful in treatment of cerebral ischemia.


Molecular Therapy | 2008

Oncolytic HSV-1 Infection of Tumors Induces Angiogenesis and Upregulates CYR61

Kazuhiko Kurozumi; Jayson Hardcastle; Roopa Thakur; joshua shroll; Michał Nowicki; Akihiro Otsuki; E. Antonio Chiocca; Balveen Kaur

Oncolytic viral therapy is under evaluation for toxicity and efficacy in clinical trials relating to several different tumors. We report a significant increase in the angiogenic index of oncolytic virus (OV)-treated glioma-matrigel implants (2.83-fold, P < 0.02). In a rat intracranial glioma model, large tumors from OV-treated animals were significantly more angiogenic than the phosphate-buffered saline (PBS)-treated control tumors (OV: 101 +/- 21.6; PBS: 19.8 +/- 10; P = 0.0037). Transcript profiling of OV-treated tumors revealed dysregulation of several transcripts involved in glioma angiogenesis. OV-mediated induction of CYR61 gene expression (8.94-fold, P = 0.001) correlated significantly with the presence of OV in tumor tissue in vivo (R = 0.7, P < 0.001). Further, induction of CYR61 mRNA and protein were confirmed in multiple human cancer cell lines and primary human tumor-derived cells in vitro, and in tumor lysate and cerebrospinal fluid (CSF) in vivo. Finally, we show that treatment of glioma cells with Cilengitide, known to counter CYR61-induced integrin activation, significantly suppressed the proangiogenic effect of OV treatment of gliomas (P < 0.05).


Molecular Therapy | 2010

Enhanced antitumor efficacy of vasculostatin (Vstat120) expressing oncolytic HSV-1.

Jayson Hardcastle; Kazuhiko Kurozumi; Nina Dmitrieva; Martin P. Sayers; Sarwat Ahmad; Peter Waterman; Ralph Weissleder; E. Antonio Chiocca; Balveen Kaur

Oncolytic viral (OV) therapy is a promising therapeutic modality for brain tumors. Vasculostatin (Vstat120) is the cleaved and secreted extracellular fragment of brain-specific angiogenesis inhibitor 1 (BAI1), a brain-specific receptor. To date, the therapeutic efficacy of Vstat120 delivery into established tumors has not been investigated. Here we tested the therapeutic efficacy of combining Vstat120 gene delivery in conjunction with OV therapy. We constructed RAMBO (Rapid Antiangiogenesis Mediated By Oncolytic virus), which expresses Vstat120 under the control of the herpes simplex virus (HSV) IE4/5 promoter. Secreted Vstat120 was detected as soon as 4 hours postinfection in vitro and was retained for up to 13 days after OV therapy in subcutaneous tumors. RAMBO-produced Vstat120 efficiently inhibited endothelial cell migration and tube formation in vitro (P = 0.0005 and P = 0.0184, respectively) and inhibited angiogenesis (P = 0.007) in vivo. There was a significant suppression of intracranial and subcutaneous glioma growth in mice treated with RAMBO compared to the control virus, HSVQ (P = 0.0021 and P < 0.05, respectively). Statistically significant reduction in tumor vascular volume fraction (VVF) and microvessel density (MVD) was observed in tumors treated with RAMBO. This is the first study to report the antitumor effects of Vstat120 delivery into established tumors and supports the further development of RAMBO as a possible cancer therapy.


Journal of Neuro-oncology | 2004

The relationship between peritumoral brain edema and the expression of vascular endothelial growth factor and its receptors in intracranial meningiomas

Shinji Otsuka; Takashi Tamiya; Yasuhiro Ono; Hiroyuki Michiue; Kazuhiko Kurozumi; Shigeru Daido; Hirokazu Kambara; Isao Date; Takashi Ohmoto

We examined the radiological and histological features of, and the influences of the expression of VEGF and its two major receptors, Flt-1 and Flk-1, on the development of peritumoral brain edema (PTBE) in patients with intracranial meningiomas. The expressions of VEGF and VEGF receptors in the immunohistochemical study were analyzed in relation to several factors, including tumor size, location, vascularity, and blood supply, as seen on digital subtraction angiographic studies. The edema volume (P = 0.0003) and edema index (P < 0.0001) had a significantly positive relation to VEGF expression. The positivity of Flt-1 and Flk-1 was mainly observed in tumor vessels; 44 cases (37.2%) were positive for the Flt-1 antibody and 37 cases (31.4%) for the Flk-1 antibody. The mean value of the edema index of the positive-Flt-1 group (5.220 ± 11.586) was significantly higher than that of the negative-Flt-1 group (1.782 ± 2.559) (P < 0.0001). The mean value of the edema index of the positive-Flk-1 group (3.925 ± 5.870) was slightly higher than that of the negative-Flk-1 group (2.671 ± 8.136) (P < 0.0001). Our data suggest that the expressions of VEGF and VEGF receptors positively relate to each other and to the formation of PTBE in patients with meningiomas.


Cancer Cell | 2016

Serine/Threonine Kinase MLK4 Determines Mesenchymal Identity in Glioma Stem Cells in an NF-κB-dependent Manner

Sung Hak Kim; Ravesanker Ezhilarasan; Emma Phillips; Daniel Gallego-Perez; Amanda Sparks; David Taylor; Katherine J. Ladner; Takuya Furuta; Hemragul Sabit; Rishi Raj Chhipa; Ju Hwan Cho; Ahmed Mohyeldin; Samuel Beck; Kazuhiko Kurozumi; Toshihiko Kuroiwa; Ryoichi Iwata; Akio Asai; Jonghwan Kim; Erik P. Sulman; Shi Yuan Cheng; L. James Lee; Mitsutoshi Nakada; Denis C. Guttridge; Biplab Dasgupta; Violaine Goidts; Krishna P. Bhat; Ichiro Nakano

Activation of nuclear factor κB (NF-κB) induces mesenchymal (MES) transdifferentiation and radioresistance in glioma stem cells (GSCs), but molecular mechanisms for NF-κB activation in GSCs are currently unknown. Here, we report that mixed lineage kinase 4 (MLK4) is overexpressed in MES but not proneural (PN) GSCs. Silencing MLK4 suppresses self-renewal, motility, tumorigenesis, and radioresistance of MES GSCs via a loss of the MES signature. MLK4 binds and phosphorylates the NF-κB regulator IKKα, leading to activation of NF-κB signaling in GSCs. MLK4 expression is inversely correlated with patient prognosis in MES, but not PN high-grade gliomas. Collectively, our results uncover MLK4 as an upstream regulator of NF-κB signaling and a potential molecular target for the MES subtype of glioblastomas.


Cancer Gene Therapy | 2012

Therapeutic effect of suicide gene-transferred mesenchymal stem cells in a rat model of glioma

H Kosaka; Tomotsugu Ichikawa; Kazuhiko Kurozumi; Hirokazu Kambara; Satoshi Inoue; Tomoko Maruo; K Nakamura; Hirofumi Hamada; Isao Date

We evaluated a new therapeutic strategy for malignant glioma, which combines intratumoral inoculation of mesenchymal stem cells (MSCs) expressing cytosine deaminase gene with 5-fluorocytosine (5-FC) administration. For in vitro and in vivo experiments, MSCs were transfected with adenovirus carrying either enhanced green fluorescent protein gene (AdexCAEGFP) or cytosine deaminase gene (AdexCACD), to establish MSC-expressing EGFP (MSC-EGFP) or CD (MSC-CD). Co-culture of 9L glioma cells with MSC-CD in a medium containing 5-FC resulted in a remarkable reduction in 9L cell viability. The migratory ability of MSC-EGFP toward 9L cells was demonstrated by double-chamber assay. For the in vivo study, rats harboring 9L brain tumors were inoculated with MSC-EGFP or MSC-CD. Immunohistochemistry of rat brain tumors inoculated with MSC-EGFP showed intratumoral distribution of MSC-EGFP. Survival analysis of rats bearing 9L gliomas treated with intratumoral MSC-CD and intraperitoneal 5-FC resulted in significant prolongation of survival compared with control animals. In conclusion, molecular therapy combining suicide gene therapy and MSCs as a targeting vehicle represents a potential new therapeutic approach for malignant glioma, both with respect to the antitumor potential of this system and its neuroprotective effect on normal brain tissue.


Current Cancer Drug Targets | 2007

Oncolytic viruses driven by tumor-specific promoters.

Jayson Hardcastle; Kazuhiko Kurozumi; E. Antonio Chiocca; Balveen Kaur

Oncolytic viruses can selectively replicate in and lead to tumor cell lysis with minimal infection/replication potential in adjoining non-neoplastic tissue. Because of paramount safety concerns, first-generation oncolytic viruses were designed to be significantly attenuated in their lytic potential. Results from recent clinical trials have revealed the safety of this approach, but have underscored the urgency for design and testing of more tumor-selective and -potent viruses to realize the full therapeutic potential of this revolutionary treatment modality. With the discovery of various molecular/genetic changes associated with neoplasia, tumor-specific transcriptional targeting of viral virulence is being tapped to generate tumor- and tissue-specific variants. This review will focus on the various strategies exploited to generate viruses whose virulence is governed by tumor-specific transcriptional events.

Collaboration


Dive into the Kazuhiko Kurozumi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Antonio Chiocca

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge