Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazuhiko Yamamoto is active.

Publication


Featured researches published by Kazuhiko Yamamoto.


Cancer Research | 2005

Multiple Repair Pathways Mediate Tolerance to Chemotherapeutic Cross-linking Agents in Vertebrate Cells

Kuniharu Nojima; Helfrid Hochegger; Alihossein Saberi; Toru Fukushima; Koji Kikuchi; Michio Yoshimura; Brian J. Orelli; Douglas K. Bishop; Seiki Hirano; Mioko Ohzeki; Masamichi Ishiai; Kazuhiko Yamamoto; Minoru Takata; Hiroshi Arakawa; Jean Marie Buerstedde; Mitsuyoshi Yamazoe; Takuo Kawamoto; Kasumi Araki; Jun A. Takahashi; Nobuo Hashimoto; Shunichi Takeda; Eiichiro Sonoda

Cross-linking agents that induce DNA interstrand cross-links (ICL) are widely used in anticancer chemotherapy. Yeast genetic studies show that nucleotide excision repair (NER), Rad6/Rad18-dependent postreplication repair, homologous recombination, and cell cycle checkpoint pathway are involved in ICL repair. To study the contribution of DNA damage response pathways in tolerance to cross-linking agents in vertebrates, we made a panel of gene-disrupted clones from chicken DT40 cells, each defective in a particular DNA repair or checkpoint pathway, and measured the sensitivities to cross-linking agents, including cis-diamminedichloroplatinum (II) (cisplatin), mitomycin C, and melphalan. We found that cells harboring defects in translesion DNA synthesis (TLS), Fanconi anemia complementation groups (FANC), or homologous recombination displayed marked hypersensitivity to all the cross-linking agents, whereas NER seemed to play only a minor role. This effect of replication-dependent repair pathways is distinctively different from the situation in yeast, where NER seems to play a major role in dealing with ICL. Cells deficient in Rev3, the catalytic subunit of TLS polymerase Polzeta, showed the highest sensitivity to cisplatin followed by fanc-c. Furthermore, epistasis analysis revealed that these two mutants work in the same pathway. Our genetic comprehensive study reveals a critical role for DNA repair pathways that release DNA replication block at ICLs in cellular tolerance to cross-linking agents and could be directly exploited in designing an effective chemotherapy.


Molecular and Cellular Biology | 2003

Fanconi Anemia FANCG Protein in Mitigating Radiation- and Enzyme-Induced DNA Double-Strand Breaks by Homologous Recombination in Vertebrate Cells

Kazuhiko Yamamoto; Masamichi Ishiai; Nobuko Matsushita; Hiroshi Arakawa; Jane E. Lamerdin; Jean Marie Buerstedde; Mitsune Tanimoto; Mine Harada; Minoru Takata

ABSTRACT The rare hereditary disorder Fanconi anemia (FA) is characterized by progressive bone marrow failure, congenital skeletal abnormality, elevated susceptibility to cancer, and cellular hypersensitivity to DNA cross-linking chemicals and sometimes other DNA-damaging agents. Molecular cloning identified six causative genes (FANCA, -C, -D2, -E, -F, and -G) encoding a multiprotein complex whose precise biochemical function remains elusive. Recent studies implicate this complex in DNA damage responses that are linked to the breast cancer susceptibility proteins BRCA1 and BRCA2. Mutations in BRCA2, which participates in homologous recombination (HR), are the underlying cause in some FA patients. To elucidate the roles of FA genes in HR, we disrupted the FANCG/XRCC9 locus in the chicken B-cell line DT40. FANCG-deficient DT40 cells resemble mammalian fancg mutants in that they are sensitive to killing by cisplatin and mitomycin C (MMC) and exhibit increased MMC and radiation-induced chromosome breakage. We find that the repair of I-SceI-induced chromosomal double-strand breaks (DSBs) by HR is decreased ∼9-fold in fancg cells compared with the parental and FANCG-complemented cells. In addition, the efficiency of gene targeting is mildly decreased in FANCG-deficient cells, but depends on the specific locus. We conclude that FANCG is required for efficient HR-mediated repair of at least some types of DSBs.


Molecular and Cellular Biology | 2005

Fanconi anemia protein FANCD2 promotes immunoglobulin gene conversion and DNA repair through a mechanism related to homologous recombination.

Kazuhiko Yamamoto; Seiki Hirano; Masamichi Ishiai; Ken-ichi Morishima; Hiroyuki Kitao; Keiko Namikoshi; Masayo Kimura; Nobuko Matsushita; Hiroshi Arakawa; Jean Marie Buerstedde; Kenshi Komatsu; Minoru Takata

ABSTRACT Recent studies show overlap between Fanconi anemia (FA) proteins and those involved in DNA repair mediated by homologous recombination (HR). However, the mechanism by which FA proteins affect HR is unclear. FA proteins (FancA/C/E/F/G/L) form a multiprotein complex, which is responsible for DNA damage-induced FancD2 monoubiquitination, a key event for cellular resistance to DNA damage. Here, we show that FANCD2-disrupted DT40 chicken B-cell line is defective in HR-mediated DNA double-strand break (DSB) repair, as well as gene conversion at the immunoglobulin light-chain locus, an event also mediated by HR. Gene conversions occurring in mutant cells were associated with decreased nontemplated mutations. In contrast to these defects, we also found increased spontaneous sister chromatid exchange (SCE) and intact Rad51 foci formation after DNA damage. Thus, we propose that FancD2 promotes a subpathway of HR that normally mediates gene conversion by a mechanism that avoids crossing over and hence SCEs.


The EMBO Journal | 2005

Functional relationships of FANCC to homologous recombination, translesion synthesis, and BLM

Seiki Hirano; Kazuhiko Yamamoto; Masamichi Ishiai; Mitsuyoshi Yamazoe; Masayuki Seki; Nobuko Matsushita; Mioko Ohzeki; Yukiko M. Yamashita; Hiroshi Arakawa; Jean Marie Buerstedde; Takemi Enomoto; Shunichi Takeda; Minoru Takata

Some of the restarting events of stalled replication forks lead to sister chromatid exchange (SCE) as a result of homologous recombination (HR) repair with crossing over. The rate of SCE is elevated by the loss of BLM helicase or by a defect in translesion synthesis (TLS). We found that spontaneous SCE levels were elevated ∼2‐fold in chicken DT40 cells deficient in Fanconi anemia (FA) gene FANCC. To investigate the mechanism of the elevated SCE, we deleted FANCC in cells lacking Rad51 paralog XRCC3, TLS factor RAD18, or BLM. The increased SCE in fancc cells required Xrcc3, whereas the fancc/rad18 double mutant exhibited higher SCE than either single mutant. Unexpectedly, SCE in the fancc/blm mutant was similar to that in blm cells, indicating functional linkage between FANCC and BLM. Furthermore, MMC‐induced formation of GFP‐BLM nuclear foci was severely compromised in both human and chicken fancc or fancd2 cells. Our cell survival data suggest that the FA proteins serve to facilitate HR, but not global TLS, during crosslink repair.


Oncogene | 2008

FANCG promotes formation of a newly identified protein complex containing BRCA2, FANCD2 and XRCC3

James B. Wilson; Kazuhiko Yamamoto; Andrew S. Marriott; Shobbir Hussain; Patrick Sung; Maureen E. Hoatlin; Christopher G. Mathew; Minoru Takata; Gary M. Kupfer; Nigel J. Jones

Fanconi anemia (FA) is a human disorder characterized by cancer susceptibility and cellular sensitivity to DNA crosslinks and other damages. Thirteen complementation groups and genes are identified, including BRCA2, which is defective in the FA-D1 group. Eight of the FA proteins, including FANCG, participate in a nuclear core complex that is required for the monoubiquitylation of FANCD2 and FANCI. FANCD2, like FANCD1/BRCA2, is not part of the core complex, and we previously showed direct BRCA2–FANCD2 interaction using yeast two-hybrid analysis. We now show in human and hamster cells that expression of FANCG protein, but not the other core complex proteins, is required for co-precipitation of BRCA2 and FANCD2. We also show that phosphorylation of FANCG serine 7 is required for its co-precipitation with BRCA2, XRCC3 and FANCD2, as well as the direct interaction of BRCA2–FANCD2. These results argue that FANCG has a role independent of the FA core complex, and we propose that phosphorylation of serine 7 is the signalling event required for forming a discrete complex comprising FANCD1/BRCA2-FANCD2-FANCG-XRCC3 (D1-D2-G-X3). Cells that fail to express either phospho-Ser7-FANCG, or full length BRCA2 protein, lack the interactions amongst the four component proteins. A role for D1-D2-G-X3 in homologous recombination repair (HRR) is supported by our finding that FANCG and the RAD51-paralog XRCC3 are epistatic for sensitivity to DNA crosslinking compounds in DT40 chicken cells. Our findings further define the intricate interface between FANC and HRR proteins in maintaining chromosome stability.


Molecular and Cellular Biology | 2004

DNA Cross-Link Repair Protein SNM1A Interacts with PIAS1 in Nuclear Focus Formation

Masamichi Ishiai; Masayo Kimura; Keiko Namikoshi; Mitsuyoshi Yamazoe; Kazuhiko Yamamoto; Hiroshi Arakawa; Kazunaga Agematsu; Nobuko Matsushita; Shunichi Takeda; Jean Marie Buerstedde; Minoru Takata

ABSTRACT The yeast SNM1/PSO2 gene specifically functions in DNA interstrand cross-link (ICL) repair, and its role has been suggested to be separate from other DNA repair pathways. In vertebrates, there are three homologs of SNM1 (SNM1A, SNM1B, and SNM1C/Artemis; SNM1 family proteins) whose functions are largely unknown. We disrupted each of the SNM1 family genes in the chicken B-cell line DT40. Both SNM1A- and SNM1B-deficient cells were sensitive to cisplatin but not to X-rays, whereas SNM1C/Artemis-deficient cells exhibited sensitivity to X-rays but not to cisplatin. SNM1A was nonepistatic with XRCC3 (homologous recombination), RAD18 (translesion synthesis), FANCC (Fanconi anemia), and SNM1B in ICL repair. SNM1A protein formed punctate nuclear foci depending on the conserved SNM1 (metallo-β-lactamase) domain. PIAS1 was found to physically interact with SNM1A, and they colocalized at nuclear foci. Point mutations in the SNM1 domain, which disrupted the interaction with PIAS1, led to mislocalization of SNM1A in the nucleus and loss of complementation of snm1a cells. These results suggest that interaction between SNM1A and PIAS1 is required for ICL repair.


Transfusion | 2002

Predictive value of circulating immature cell counts in peripheral blood for timing of peripheral blood progenitor cell collection after G–CSF plus chemotherapy-induced mobilization

Teruhiko Kozuka; Kazuma Ikeda; Takanori Teshima; Kensuke Kojima; Keitaro Matsuo; Akihiro Bessho; Kazutaka Sunami; Yasushi Hiramatsu; Yoshinobu Maeda; Toshio Noguchi; Kazuhiko Yamamoto; Nobuharu Fujii; Toshi Imai; Katsuto Takenaka; Katsuji Shinagawa; Fumihiko Ishimaru; Kenji Niiya; Norio Koide; Mitsune Tanimoto; Mine Harada

BACKGROUND: Enumeration of CD34+ cells in peripheral blood (PB) before apheresis predicts the number of CD34+ cells collected, although flow cytometric techniques used are complex and expensive. In an attempt to determine the optimal timing for peripheral blood progenitor cell (PBPC) collection, the usefulness of circulating immature cell (CIC) counts in PB was evaluated.


International Immunology | 2008

Regulation of histone H4 acetylation by transcription factor E2A in Ig gene conversion

Hiroyuki Kitao; Masayo Kimura; Kazuhiko Yamamoto; Hidetaka Seo; Keiko Namikoshi; Yasutoshi Agata; Kunihiro Ohta; Minoru Takata

Recent studies implicate the transcription factor E2A in Ig diversification such as somatic hypermutation or gene conversion (GCV). GCV also requires active Ig transcription, expression of the activation-induced deaminase (AID) and a set of homologous recombination factors. We have disrupted the E2A gene in the chicken B-cell line DT40 and found greatly diminished rate of GCV without changes in the levels of transcripts from AID and Ig heavy chain or Ig light chain (IgL) genes. However, chromatin immunoprecipitation analysis revealed that the loss of E2A accompanies drastically reduced acetylation levels of the histone H4 in rearranged IgL locus. Furthermore, the defects in GCV were restored by trichostatin A treatment, which raised H4 acetylation to the normal levels. Thus, E2A may contribute to GCV by maintaining histone acetylation, which could be a prerequisite for targeting or full deaminase function of AID.


Sub-cellular biochemistry | 2006

The fanconi anemia pathway promotes homologous recombination repair in DT40 cell line

Minoru Takata; Kazuhiko Yamamoto; Nobuko Matsushita; Hiroyuki Kitao; Seiki Hirano; Masamichi Ishiai

Fanconi anemia (FA) is a rare hereditary disorder characterized by bone marrow failure, compromised genome stability, and increased incidence of cancer. FA is caused by abnormalities that occur in components of the FA core complex, a key factor FancD2, breast cancer susceptibility protein BRCA2/FancD1, or BRIP1/FancJ. These proteins are proposed to function in a common biochemical process (FA pathway), however, its precise role is still unclear. In this chapter, we will summarize our genetic analysis on the FA pathway using DT40 cells line. Our data revealed that (1) FA pathway promotes DNA repair mediated by homologous recombination, and likely regulates translesion synthesis, thereby protecting cells against stalled replication forks; (2) BLM helicase can be regarded as an effector molecule of the FA pathway, since its subnuclear localization is regulated by FA pathway; (3) the FA core complex has multiple roles in the activation, relocalization, and DNA repair function of FANCD2.


Blood | 2005

Heightened Activation of the p53-ATM Axis in Fanconi Anemia Mutant-Derived Primary Cells: Implications for Carcinogenesis.

Kazuhiko Yamamoto; Toru Ouchi; Johnson M. Liu

Collaboration


Dive into the Kazuhiko Yamamoto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seiki Hirano

Kawasaki Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge