Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazuhiro Maeshima is active.

Publication


Featured researches published by Kazuhiro Maeshima.


Nature | 2008

Cohesin mediates transcriptional insulation by CCCTC-binding factor

Kerstin S. Wendt; Keisuke Yoshida; Takehiko Itoh; Masashige Bando; Birgit Koch; Erika Schirghuber; Shuichi Tsutsumi; Genta Nagae; Ko Ishihara; Tsuyoshi Mishiro; Kazuhide Yahata; Fumio Imamoto; Hiroyuki Aburatani; Mitsuyoshi Nakao; Naoko Imamoto; Kazuhiro Maeshima; Katsuhiko Shirahige; Jan-Michael Peters

Cohesin complexes mediate sister-chromatid cohesion in dividing cells but may also contribute to gene regulation in postmitotic cells. How cohesin regulates gene expression is not known. Here we describe cohesin-binding sites in the human genome and show that most of these are associated with the CCCTC-binding factor (CTCF), a zinc-finger protein required for transcriptional insulation. CTCF is dispensable for cohesin loading onto DNA, but is needed to enrich cohesin at specific binding sites. Cohesin enables CTCF to insulate promoters from distant enhancers and controls transcription at the H19/IGF2 (insulin-like growth factor 2) locus. This role of cohesin seems to be independent of its role in cohesion. We propose that cohesin functions as a transcriptional insulator, and speculate that subtle deficiencies in this function contribute to ‘cohesinopathies’ such as Cornelia de Lange syndrome.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ

Mikhail Eltsov; Kirsty M. MacLellan; Kazuhiro Maeshima; Achilleas S. Frangakis; Jacques Dubochet

Although the formation of 30-nm chromatin fibers is thought to be the most basic event of chromatin compaction, it remains controversial because high-resolution imaging of chromatin in living eukaryotic cells had not been possible until now. Cryo-electron microscopy of vitreous sections is a relatively new technique, which enables direct high-resolution observation of the cell structures in a close-to-native state. We used cryo-electron microscopy and image processing to further investigate the presence of 30-nm chromatin fibers in human mitotic chromosomes. HeLa S3 cells were vitrified by high-pressure freezing, thin-sectioned, and then imaged under the cryo-electron microscope without any further chemical treatment or staining. For an unambiguous interpretation of the images, the effects of the contrast transfer function were computationally corrected. The mitotic chromosomes of the HeLa S3 cells appeared as compact structures with a homogeneous grainy texture, in which there were no visible 30-nm fibers. Power spectra of the chromosome images also gave no indication of 30-nm chromatin folding. These results, together with our observations of the effects of chromosome swelling, strongly suggest that, within the bulk of compact metaphase chromosomes, the nucleosomal fiber does not undergo 30-nm folding, but exists in a highly disordered and interdigitated state, which is, on the local scale, comparable with a polymer melt.


The EMBO Journal | 2012

Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30-nm chromatin structure

Yoshinori Nishino; Mikhail Eltsov; Yasumasa Joti; Kazuki Ito; Hideaki Takata; Yukio Takahashi; Saera Hihara; Achilleas S. Frangakis; Naoko Imamoto; Tetsuya Ishikawa; Kazuhiro Maeshima

How a long strand of genomic DNA is compacted into a mitotic chromosome remains one of the basic questions in biology. The nucleosome fibre, in which DNA is wrapped around core histones, has long been assumed to be folded into a 30‐nm chromatin fibre and further hierarchical regular structures to form mitotic chromosomes, although the actual existence of these regular structures is controversial. Here, we show that human mitotic HeLa chromosomes are mainly composed of irregularly folded nucleosome fibres rather than 30‐nm chromatin fibres. Our comprehensive and quantitative study using cryo‐electron microscopy and synchrotron X‐ray scattering resolved the long‐standing contradictions regarding the existence of 30‐nm chromatin structures and detected no regular structure >11 nm. Our finding suggests that the mitotic chromosome consists of irregularly arranged nucleosome fibres, with a fractal nature, which permits a more dynamic and flexible genome organization than would be allowed by static regular structures.


Developmental Cell | 2013

Chromosome Engineering Allows the Efficient Isolation of Vertebrate Neocentromeres

Wei-Hao Shang; Tetsuya Hori; Nuno Martins; Atsushi Toyoda; Sadahiko Misu; Norikazu Monma; Ichiro Hiratani; Kazuhiro Maeshima; Kazuho Ikeo; Asao Fujiyama; Hiroshi Kimura; William C. Earnshaw; Tatsuo Fukagawa

Summary Centromeres are specified by sequence-independent epigenetic mechanisms in most organisms. Rarely, centromere repositioning results in neocentromere formation at ectopic sites. However, the mechanisms governing how and where neocentromeres form are unknown. Here, we established a chromosome-engineering system in chicken DT40 cells that allowed us to efficiently isolate neocentromere-containing chromosomes. Neocentromeres appear to be structurally and functionally equivalent to native centromeres. Chromatin immunoprecipitation sequencing (ChIP-seq) analysis with 18 neocentromeres revealed that the centromere-specific histone H3 variant CENP-A occupies an ∼40 kb region at each neocentromere, which has no preference for specific DNA sequence motifs. Furthermore, we found that neocentromeres were not associated with histone modifications H3K9me3, H3K4me2, and H3K36me3 or with early replication timing. Importantly, low but significant levels of CENP-A are detected around endogenous centromeres, which are capable of seeding neocentromere assembly if the centromere core is removed. In summary, our experimental system provides valuable insights for understanding how neocentromeres form.


Nucleus | 2012

Chromosomes without a 30-nm chromatin fiber

Yasumasa Joti; Takaaki Hikima; Yoshinori Nishino; Fukumi Kamada; Saera Hihara; Hideaki Takata; Tetsuya Ishikawa; Kazuhiro Maeshima

How is a long strand of genomic DNA packaged into a mitotic chromosome or nucleus? The nucleosome fiber (beads-on-a-string), in which DNA is wrapped around core histones, has long been assumed to be folded into a 30-nm chromatin fiber, and a further helically folded larger fiber. However, when frozen hydrated human mitotic cells were observed using cryoelectron microscopy, no higher-order structures that included 30-nm chromatin fibers were found. To investigate the bulk structure of mitotic chromosomes further, we performed small-angle X-ray scattering (SAXS), which can detect periodic structures in noncrystalline materials in solution. The results were striking: no structural feature larger than 11 nm was detected, even at a chromosome-diameter scale (~1 μm). We also found a similar scattering pattern in interphase nuclei of HeLa cells in the range up to ~275 nm. Our findings suggest a common structural feature in interphase and mitotic chromatins: compact and irregular folding of nucleosome fibers occurs without a 30-nm chromatin structure.


Cell Reports | 2012

Local Nucleosome Dynamics Facilitate Chromatin Accessibility in Living Mammalian Cells

Saera Hihara; Chan-Gi Pack; Kazunari Kaizu; Tomomi Tani; Tomo Hanafusa; Tadasu Nozaki; Satoko Takemoto; Tomohiko Yoshimi; Hideo Yokota; Naoko Imamoto; Yasushi Sako; Masataka Kinjo; Koichi Takahashi; Takeharu Nagai; Kazuhiro Maeshima

Genome information, which is three-dimensionally organized within cells as chromatin, is searched and read by various proteins for diverse cell functions. Although how the protein factors find their targets remains unclear, the dynamic and flexible nature of chromatin is likely crucial. Using a combined approach of fluorescence correlation spectroscopy, single-nucleosome imaging, and Monte Carlo computer simulations, we demonstrate local chromatin dynamics in living mammalian cells. We show that similar to interphase chromatin, dense mitotic chromosomes also have considerable chromatin accessibility. For both interphase and mitotic chromatin, we observed local fluctuation of individual nucleosomes (~50 nm movement/30 ms), which is caused by confined Brownian motion. Inhibition of these local dynamics by crosslinking impaired accessibility in the dense chromatin regions. Our findings show that local nucleosome dynamics drive chromatin accessibility. We propose that this local nucleosome fluctuation is the basis for scanning genome information.


Journal of Biochemistry | 2008

Packaging the genome: the structure of mitotic chromosomes.

Kazuhiro Maeshima; Mikhail Eltsov

Mitotic chromosomes are essential structures for the faithful transmission of duplicated genomic DNA into two daughter cells during cell division. Although more than 100 years have passed since chromosomes were first observed, it remains unclear how a long string of genomic DNA is packaged into compact mitotic chromosomes. Although the classical view is that human chromosomes consist of radial 30 nm chromatin loops that are somehow tethered centrally by scaffold proteins, called condensins, cryo-electron microscopy observation of frozen hydrated native chromosomes reveals a homogeneous, grainy texture and neither higher-order nor periodic structures including 30 nm chromatin fibres were observed. As a compromise to fill this huge gap, we propose a model in which the radial chromatin loop structures in the classic view are folded irregularly toward the chromosome centre with the increase in intracellular cations during mitosis. Consequently, compact native chromosomes are made up primarily of irregular chromatin networks cross-linked by self-assembled condensins forming the chromosome scaffold.


The EMBO Journal | 2001

Specific targeting of insect and vertebrate telomeres with pyrrole and imidazole polyamides

Kazuhiro Maeshima; Samuel Théodoor Janssen; Ulrich K. Laemmli

DNA minor groove‐binding compounds (polyamides) that target insect and vertebrate telomeric repeats with high specificity were synthesized. Base pair recognition of these polyamides is based on the presence of the heterocyclic amino acids pyrrole and imidazole. One compound (TH52B) interacts uniquely and with excellent specificity (Kd = 0.12 nM) with two consecutive insect‐type telomeric repeats (TTAGG). A related compound, TH59, displays high specificity (Kd = 0.5 nM) for tandem vertebrate (TTAGGG) and insect telomeric repeats. The high affinity and specificity of these compounds were achieved by bidentate binding of two flexibly linked DNA‐binding moieties. Epifluorescence microscopy studies show that fluorescent derivatives of TH52B and TH59 stain insect or vertebrate telomeres of chromosomes and nuclei sharply. Importantly, the telomere‐specific polyamide signals of HeLa chromosomes co‐localize with the immunofluorescence signals of the telomere‐binding protein TRF1. Our results demonstrate that telomere‐specific compounds allow rapid estimation of relative telomere length. The insect‐specific compound TH52 was shown to be incorporated rapidly into growing Sf9 cells, underlining the potential of these compounds for telomere biology and possibly human medicine.


PLOS ONE | 2013

Chromatin Compaction Protects Genomic DNA from Radiation Damage

Hideaki Takata; Tomo Hanafusa; Toshiaki Mori; Mari Shimura; Yutaka Iida; Ken-ichi Ishikawa; Kenichi Yoshikawa; Yuko Yoshikawa; Kazuhiro Maeshima

Genomic DNA is organized three-dimensionally in the nucleus, and is thought to form compact chromatin domains. Although chromatin compaction is known to be essential for mitosis, whether it confers other advantages, particularly in interphase cells, remains unknown. Here, we report that chromatin compaction protects genomic DNA from radiation damage. Using a newly developed solid-phase system, we found that the frequency of double-strand breaks (DSBs) in compact chromatin after ionizing irradiation was 5–50-fold lower than in decondensed chromatin. Since radical scavengers inhibited DSB induction in decondensed chromatin, condensed chromatin had a lower level of reactive radical generation after ionizing irradiation. We also found that chromatin compaction protects DNA from attack by chemical agents. Our findings suggest that genomic DNA compaction plays an important role in maintaining genomic integrity.


Chromosoma | 2005

Chromosome structure: improved immunolabeling for electron microscopy

Kazuhiro Maeshima; Michail Eltsov; Ulrich K. Laemmli

To structurally dissect mitotic chromosomes, we aim to position along the folded chromatin fiber proteins involved in long-range order, such as topoisomerase IIα (topoIIα) and condensin. Immuno-electron microscopy (EM) of thin-sectioned chromosomes is the method of choice toward this goal. A much-improved immunoprocedure that avoids problems associated with aldehyde fixation, such as chemical translinking and networking of chromatin fibers, is reported here. We show that ultraviolet irradiation of isolated nuclei or chromosomes facilitates high-level specific immunostaining, as established by fluorescence microscopy with a variety of antibodies and especially by immuno-EM. Ultrastructural localizations of topoIIα and condensin I component hBarren (hBar; hCAP-H) in mitotic chromosomes were studied by immuno-EM. We show that the micrographs of thin-sectioned chromosomes map topoIIα and hBar to the center of the chromosomal body where the chromatin fibers generally converge. This localization is defined by many clustered gold particles with only rare individual particles in the peripheral halo. The data obtained are consistent with the view that condensin and perhaps topoIIα tether chromatin to loops according to a scaffolding-type model.

Collaboration


Dive into the Kazuhiro Maeshima's collaboration.

Top Co-Authors

Avatar

Naoko Imamoto

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Sachiko Tamura

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Tadasu Nozaki

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Saera Hihara

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

Ryosuke Imai

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge