Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazuhiro Takagi is active.

Publication


Featured researches published by Kazuhiro Takagi.


Applied and Environmental Microbiology | 2009

Aerobic Mineralization of Hexachlorobenzene by Newly Isolated Pentachloronitrobenzene-Degrading Nocardioides sp. Strain PD653

Kazuhiro Takagi; Akio Iwasaki; Ichiro Kamei; Koji Satsuma; Yuichi Yoshioka; Naoki Harada

ABSTRACT A novel aerobic pentachloronitrobenzene-degrading bacterium, Nocardioides sp. strain PD653, was isolated from an enrichment culture in a soil-charcoal perfusion system. The bacterium also degraded hexachlorobenzene, a highly recalcitrant environmental pollutant, accompanying the generation of chloride ions. Liberation of 14CO2 from [U-ring-14C]hexachlorobenzene was detected in a culture of the bacterium and indicates that strain PD653 is able to mineralize hexachlorobenzene under aerobic conditions. The metabolic pathway of hexachlorobenzene is initiated by oxidative dechlorination to produce pentachlorophenol. As further intermediate metabolites, tetrachlorohydroquinone and 2,6-dichlorohydroquinone have been detected. Strain PD653 is the first naturally occurring aerobic bacteria capable of mineralizing hexachlorobenzene.


Pest Management Science | 2009

Adsorption, desorption and dissipation of metolachlor in surface and subsurface soils

Youbin Si; Kazuhiro Takagi; Akio Iwasaki; Dongmei Zhou

BACKGROUND Variations in soil properties with depth influence retention and degradation of pesticides. Understanding how soil properties within a profile affect pesticide retention and degradation will result in more accurate prediction by simulation models of pesticide fate and potential groundwater contamination. Metolachlor is more persistent than other acetanilide herbicides in the soil environment and has the potential to leach into groundwater. Reasonably, information is needed about the dissipation and eventual fate of metolachlor in subsoils. The objectives were to evaluate the adsorption and desorption characteristics and to determine the dissipation rates of metolachlor in both surface and subsurface soil samples. RESULTS Adsorption of metolachlor was greater in the high-organic-matter surface soil than in subsoils. Lower adsorption distribution coefficient (K(ads)) values with increasing depth indicated less adsorption at lower depths and greater leaching potential of metolachlor after passage through the surface horizon. Desorption of metolachlor showed hysteresis, indicated by the higher adsorption slope (1/n(ads)) compared with the desorption slope (1/n(des)). Soils that adsorbed more metolachlor also desorbed less metolachlor. Metolachlor dissipation rates generally decreased with increasing soil depth. The first-order dissipation rate was highest at the 0-50 cm depth (0.140 week(-1)) and lowest at the 350-425 cm depth (0.005 week(-1)). Degradation of the herbicide was significantly correlated with microbial activity in soils. CONCLUSION Metolachlor that has escaped degradation or binding to organic matter at the soil surface might leach into the subsurface soil where it will dissipate slowly and be subject to transport to groundwater.


Journal of Wood Science | 2011

Degradation of endosulfan and endosulfan sulfate by white-rot fungus Trametes hirsuta

Ichiro Kamei; Kazuhiro Takagi; Ryuichiro Kondo

Endosulfan, an organochlorine insecticide, and its metabolite endosulfan sulfate are persistent in environments and are considered toxic. We investigate the possible nontoxic bioremediation of endosulfan. An endosulfandegrading fungus that does not produce endosulfan sulfate was selected from eight species of white-rot fungi. High degradation of endosulfan and low accumulation of endosulfan sulfate were found in cultures of Trametes hirsuta. A degradation experiment using endosulfan sulfate as the substrate revealed that T. hirsuta is able to further degrade endosulfan sulfate following the oxidative conversion of endosulfan to endosulfan sulfate. Endosulfan and endosulfan sulfate were converted to several metabolites via hydrolytic pathways. In addition, endosulfan dimethylene, previously reported as a metabolite of the soil bacterium Arthrobacter sp., was detected in T. hirsuta culture containing endosulfan sulfate. Our results suggest that T. hirsuta has multiple pathways for the degradation of endosulfan and endosulfan sulfate and thus has great potential for use as a biocatalyst in endosulfan bioremediation.


Environmental Science & Technology | 2010

Biodegradation of dieldrin by a soil fungus isolated from a soil with annual endosulfan applications.

Ryota Kataoka; Kazuhiro Takagi; Ichiro Kamei; Hiromasa Kiyota; Yuuki Sato

An aerobic dieldrin-degrading fungus, Mucor racemosus strain DDF, was isolated from a soil to which endosulfan had been annually applied for more than 10 years until 2008. Strain DDF degraded dieldrin to 1.01 microM from 14.3 microM during a 10-day incubation at 25 degrees C. Approximately 0.15 microM (9%) of aldrin trans-diol was generated from the dieldrin degradation after a 1-day incubation. The degradation of dieldrin by strain DDF was detected over a broad range of pH and concentrations of glucose and nitrogen sources. Extracellular fluid without mycelia also degraded dieldrin. Strain DDF degraded not only dieldrin but also heptachlor, heptachlor epoxide, endosulfan, endosulfan sulfate, DDT, and DDE. Endosulfan sulfate and heptachlor were degraded by 0.64 microM (95%) and 0.75 microM (94%), respectively, whereas endosulfan and DDE were degraded by 2.42 microM (80%) and 3.29 microM (79%), respectively, and DDT and heptachlor epoxide were degraded by 6.95 microM (49.3%) and 5.36 microM (67.5%), respectively, compared with the control, which had a concentration of approximately 14 microM. These results suggest that strain DDF could be a candidate for the bioremediation of sites contaminated with various persistent organochlorine pesticides including POPs.


Applied Microbiology and Biotechnology | 2013

Biodegradability and biodegradation pathways of endosulfan and endosulfan sulfate

Ryota Kataoka; Kazuhiro Takagi

Endosulfan and endosulfan sulfate are persistent organic pollutants that cause serious environmental problems. Although these compounds are already prohibited in many countries, residues can be detected in soils with a history of endosulfan application. Endosulfan is transformed in the environment into endosulfan sulfate, which is a toxic and persistent metabolite. However, some microorganisms can degrade endosulfan without producing endosulfan sulfate, and some can degrade endosulfan sulfate. Therefore, biodegradation has the potential to clean up soil contaminated with endosulfan. In this review, we provide an overview of aerobic endosulfan degradation by bacteria and fungi, and a summary of recent advances and prospects in this research field.


Chemosphere | 2011

Novel metabolic pathways of organochlorine pesticides dieldrin and aldrin by the white rot fungi of the genus Phlebia.

Pengfei Xiao; Toshio Mori; Ichiro Kamei; Hiromasa Kiyota; Kazuhiro Takagi; Ryuichiro Kondo

White rot fungi can degrade a wide spectrum of recalcitrant organic pollutants, including polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated biphenyls (PCBs). In this experiment, 20 white rot fungi, belonging to genus Phlebia, were investigated for their ability to degrade dieldrin. Based on the screening results, we further investigated Phlebia acanthocystis, Phlebia brevispora, and Phlebia aurea to determine their degradation capacity and metabolic products towards dieldrin and aldrin. The three fungi were able to remove over 50% of dieldrin in a low nitrogen medium, after 42 d of incubation. Three hydroxylated products were detected as metabolites of dieldrin, suggesting that in Phlebia strains, hydroxylation reactions might play an important role in the metabolism of dieldrin. In contrast to dieldrin, aldrin exhibited higher levels of degradation activity. Over 90% of aldrin was removed after 28 d of incubation, and several new metabolites of aldrin in microorganisms, including 9-hydroxyaldrin and two carboxylic acid products, were detected in fungal cultures. These results indicate that the methylene moiety of aldrin and dieldrin molecules might be prone to enzymatic attack by white rot fungi. In this study, we describe for the first time a new metabolic pathway of both compounds by fungi of genus Phlebia.


Fems Microbiology Letters | 2008

Different substrate specificities of two triazine hydrolases (TrzNs) from Nocardioides species

Kenichi Yamazaki; Kunihiko Fujii; Akio Iwasaki; Kazuhiro Takagi; Koji Satsuma; Naoki Harada; Tai Uchimura

Nocardioides sp. strain MTD22 degraded atrazine, ametryn and atraton, as did Arthrobacter aurescens strain TC1 and Nocardioides sp. strain C190. These strains contain trzN, a gene coding for TrzN, triazine hydrolase showing a broad substrate range. However, Nocardioides sp. strain AN3 degraded only atrazine despite containing trzN. These differences in s-triazine degradation are presumed to be due to differences in the amino acid sequences of TrzNs. Consequently, 1371 nucleotides of the trzN coding sequences of strains AN3 and MTD22 were determined. Comparisons of the amino acid sequences of TrzNs indicated that three residues of strain AN3 (Thr(214), His(215) and Gln(241)) were distinct from those of the other three strains (Pro(214), Tyr(215) and Glu(241)). To confirm the relationships between these amino acid sequences and the substrate specificities of TrzNs, wild and chimera trzN genes were constructed and expressed in Escherichia coli cells. Cells expressing wild MTD22 trzN (Pro(214)Tyr(215)Glu(241)) and chimera AN3-MTD22 trzN (Thr(214)His(215)Glu(241)) degraded all s-triazines, but the degradation rate was markedly decreased in AN3-MTD22 trzN. Wild AN3 trzN (Thr(214)His(215)Gln(241)) and chimera MTD22-AN3 trzN (Pro(214)Tyr(215)Gln(241)) degraded only atrazine. These results suggest that the substitution of Glu(241) for Gln(241) significantly decreases enzyme affinity for ametryn and atraton.


Environmental Microbiology | 2015

Arsenic biotransformation by Streptomyces sp. isolated from rice rhizosphere.

Masato Kuramata; Futa Sakakibara; Ryota Kataoka; Tadashi Abe; Maki Asano; Koji Baba; Kazuhiro Takagi; Satoru Ishikawa

Isolation and functional analysis of microbes mediating the methylation of arsenic (As) in paddy soils is important for understanding the origin of dimethylarsinic acid (DMA) in rice grains. Here, we isolated from the rice rhizosphere a unique bacterium responsible for As methylation. Strain GSRB54, which was isolated from the roots of rice plants grown in As-contaminated paddy soil under anaerobic conditions, was classified into the genus Streptomyces by 16S ribosomal RNA sequencing. Sequence analysis of the arsenite S-adenosylmethionine methyltransferase (arsM) gene revealed that GSRB54 arsM was phylogenetically different from known arsM genes in other bacteria. This strain produced DMA and monomethylarsonic acid when cultured in liquid medium containing arsenite [As(III)]. Heterologous expression of GSRB54 arsM in Escherichia coli promoted methylation of As(III) by converting it into DMA and trimethylarsine oxide. These results demonstrate that strain GSRB54 has a strong ability to methylate As. In addition, DMA was detected in the shoots of rice grown in liquid medium inoculated with GSRB54 and containing As(III). Since Streptomyces are generally aerobic bacteria, we speculate that strain GSRB54 inhabits the oxidative zone around roots of paddy rice and is associated with DMA accumulation in rice grains through As methylation in the rice rhizosphere.


Chemosphere | 2011

Biodegradation of endosulfan by Mortieralla sp. strain W8 in soil: Influence of different substrates on biodegradation.

Ryota Kataoka; Kazuhiro Takagi; Futa Sakakibara

To examine the bioremediation potential of Mortierella sp. strain W8 in endosulfan contaminated soil, the fungus was inoculated into sterilized and unsterilized soil spiked with endosulfan. Wheat bran and cane molasses were used as substrates to understand the influence of different organic materials on the degradation of endosulfan in soil. Strain W8 degraded α- and β-endosulfan in both sterilized and unsterilized soil. In unsterilized soil with wheat bran+W8, α- and β- endosulfan were degraded by approximately 80% and 50%, respectively after 28 d incubation against the initial endosulfan concentration (3 mg kg(-1) dw). The corresponding values for α- and β-endosulfan degradation with wheat bran only were 50% and 3%. Endosulfan diol metabolite was detected after 14 d incubation in wheat bran+W8 whereas it was not found with wheat bran only. Production of endosulfan sulfate, the main metabolite of endosulfan, was suppressed with wheat bran+W8 treatment compared with wheat bran only. It was demonstrated that wheat bran is a more suitable substrate for strain W8 than cane molasses. Wheat bran+W8 is a superior fungus and substrate mix for bioremediation in soil contaminated with endosulfan.


Pest Management Science | 2010

Bioconversion of dieldrin by wood-rotting fungi and metabolite detection.

Ichiro Kamei; Kazuhiro Takagi; Ryuichiro Kondo

BACKGROUND Dieldrin is one of the most persistent organochlorine pesticides, listed as one of the 12 persistent organic pollutants in the Stockholm Convention. Although microbial degradation is an effective way to remediate environmental pollutants, reports on aerobic microbial degradation of dieldrin are limited. Wood-rotting fungi can degrade a wide spectrum of recalcitrant organopollutants, and an attempt has been made to select wood-rotting fungi that can degrade dieldrin, and to identify the metabolite. RESULTS Thirty-four isolates of wood-rotting fungi were investigated for their ability to degrade dieldrin. Strain YK543 degraded 39.1 +/- 8.8% of dieldrin during 30 days of incubation. Phylogenetic analysis demonstrated that strain YK543 was closely related to the fungus Phlebia brevispora Nakasone TMIC33929, which has been reported as a fungus that can degrade chlorinated dioxins and polychlorinated biphenyls. 9-Hydroxydieldrin was detected as a metabolite in the cultures of strain YK543. CONCLUSION It is important to select the microorganisms that degrade organic pollutants, and to identify the metabolic pathway for the development of bioremediation methods. Strain YK543 was selected as a fungus capable of degrading dieldrin. The metabolic pathway includes 9-hydroxylation reported in rats metabolism catalysed by liver microsomal monooxygenase. This is the first report of transformation of dieldrin to 9-hydroxydieldrin by a microorganism.

Collaboration


Dive into the Kazuhiro Takagi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenichi Yamazaki

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Naoki Harada

Osaka Prefecture University

View shared research outputs
Top Co-Authors

Avatar

Hirozumi Watanabe

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Futa Sakakibara

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Koji Ito

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge