Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazuhiro Tsuruma is active.

Publication


Featured researches published by Kazuhiro Tsuruma.


Neuroscience | 2010

Toll-like receptor 4 (TLR4), but not TLR3 or TLR9, knock-out mice have neuroprotective effects against focal cerebral ischemia

Kana Hyakkoku; Junya Hamanaka; Kazuhiro Tsuruma; Masamitsu Shimazawa; Hirotaka Tanaka; Satoshi Uematsu; Shizuo Akira; Naoki Inagaki; Hiroichi Nagai; Hideaki Hara

Toll-like receptors (TLRs) are signaling receptors in the innate immune system that is a specific immunologic response to systemic bacterial infection. We investigated whether cerebral ischemia induced by the middle cerebral artery occlusion (MCAO) for 2 h differed in mice that lack a functional TLR3, TLR4, or TLR9 signaling pathway. TLR4, but not TLR3 or TLR9, knock-out (KO) mice had significantly smaller infarct area and volume at 24 h after ischemia-reperfusion (I/R) compared with wild-type mice. In addition, TLR4 KO mice improved in neurological deficits after I/R compared with wild-type mice. Moreover, we investigated the expression of TLR4 in the ischemic brain with immunohistochemistry. The number of TLR4-positive cells gradually increased from 1 h after MCAO to 22 h after I/R. We also examined the localization of TLR4 in the ischemic area. TLR4 was localized with CD11b-positive microglial cells in the ischemic striatum and the number of CD11b-positive microglial cells was smaller in TLR4 KO mice than in wild-type mice. In addition, we investigated the translocation of NF-κB among TLR3, 4, and 9 KO mice after I/R injury using western blotting. NF-κBs p65 subunit was decreased in TLR4 KO mice compared to wild-type mice, but not TLR3 or 9 KO mice. These data suggest that TLR4 knockout, but not TLR3 or TLR9 knockout, may play a neuroprotective role in ischemic brain injury induced by MCAO in mice.


FEBS Letters | 2004

Ubiquilin interacts with ubiquitylated proteins and proteasome through its ubiquitin-associated and ubiquitin-like domains.

Han Seok Ko; Takashi Uehara; Kazuhiro Tsuruma; Yasuyuki Nomura

Mammalian cells acquire tolerance against multiple stressors through the high‐level expression of stress‐responsible genes. We have previously demonstrated that protein‐disulfide isomerase (PDI) together with ubiquilin are up‐regulated in response to hypoxia/brain ischemia, and play critical roles in resistance to these damages. We show here that ubiquilin interacts preferentially with poly‐ubiquitin chains and 19S proteasome subunits. Taken together, these results suggest that ubiquitin could serve as an adaptor protein that both interacts with PDI and mediates the delivery of poly‐ubiquitylated proteins to the proteasome in the cytosol in the vicinity of the endoplasmic reticulum membrane.


Scientific Reports | 2015

Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light

Yoshiki Kuse; Kenjiro Ogawa; Kazuhiro Tsuruma; Masamitsu Shimazawa; Hideaki Hara

Our eyes are increasingly exposed to light from the emitting diode (LED) light of video display terminals (VDT) which contain much blue light. VDTs are equipped with televisions, personal computers, and smart phones. The present study aims to clarify the mechanism underlying blue LED light-induced photoreceptor cell damage. Murine cone photoreceptor-derived cells (661 W) were exposed to blue, white, or green LED light (0.38 mW/cm(2)). In the present study, blue LED light increased reactive oxygen species (ROS) production, altered the protein expression level, induced the aggregation of short-wavelength opsins (S-opsin), resulting in severe cell damage. While, blue LED light damaged the primary retinal cells and the damage was photoreceptor specific. N-Acetylcysteine (NAC), an antioxidant, protected against the cellular damage induced by blue LED light. Overall, the LED light induced cell damage was wavelength-, but not energy-dependent and may cause more severe retinal photoreceptor cell damage than the other LED light.


Neurobiology of Disease | 2009

Involvement of CHOP, an ER-stress apoptotic mediator, in both human sporadic ALS and ALS model mice.

Yasushi Ito; Mitsunori Yamada; Hirotaka Tanaka; Kazunari Aida; Kazuhiro Tsuruma; Masamitsu Shimazawa; Isao Hozumi; Takashi Inuzuka; Hitoshi Takahashi; Hideaki Hara

Endoplasmic reticulum (ER) stress-induced neuronal death may play a critical role in the pathogenesis of amyotrophic lateral sclerosis (ALS). However, whether CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP), an ER-stress apoptotic mediator, is involved in the pathogenesis of ALS is controversial. Here we demonstrate the expression levels and localization of CHOP in spinal cords of both sporadic ALS patients and ALS transgenic mice by immunohistochemistry. In the spinal cords of sporadic ALS patients, CHOP was markedly up-regulated but typically expressed at low levels in those of the control. Likewise, CHOP expression increased at 14 (symptomatic stage) and 18 to 20 weeks (end stage) in ALS transgenic mice spinal cords. Furthermore, localizations of CHOP were merged in motor neurons and glial cells, such as oligodendrocytes, astrocytes, and microglia. These results indicate that the up-regulation of CHOP in motor neurons and glial cells may play pivotal roles in the pathogenesis of ALS.


European Journal of Pharmacology | 2011

Crocetin prevents retinal degeneration induced by oxidative and endoplasmic reticulum stresses via inhibition of caspase activity

Mika Yamauchi; Kazuhiro Tsuruma; Shunsuke Imai; Tomohiro Nakanishi; Naofumi Umigai; Masamitsu Shimazawa; Hideaki Hara

Crocetin is a carotenoid that is the aglicone of crocin, which are found in saffron stigmas (Crocus sativus L.) and gardenia fruit (Gardenia jasminoides Ellis). In this study, we investigated the effects of crocetin on retinal damage. To examine whether crocetin affects stress pathways, we investigated intracellular oxidation induced by reactive oxygen species, expression of endoplasmic reticulum (ER) stress-related proteins, disruption of the mitochondrial membrane potential (ΔΨ(m)), and caspases activation. In vitro, we employed cultured retinal ganglion cells (RGC-5, a mouse ganglion cell-line transformed using E1A virus). Cell damage was induced by tunicamycin or hydrogen peroxide (H(2)O(2)) exposure. Crocetin at a concentration of 3μM showed the inhibitory effect of 50-60% against tunicamycin- and H(2)O(2)-induced cell death and inhibited increase in caspase-3 and -9 activity. Moreover, crocetin inhibited the enzymatic activity of caspase-9 in a cell-free system. In vivo, retinal damage in mice was induced by exposure to white light at 8000lx for 3h after dark adaptation. Photoreceptor damage was evaluated by measuring the outer nuclear layer thickness at 5days after light exposure and recording the electroretinogram (ERG). Retinal cell damage was also detected with Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining at 48h after light exposure. Crocetin at 100mg/kg, p.o. significantly inhibited photoreceptor degeneration and retinal dysfunction and halved the expression of TUNEL-positive cells. These results indicate that crocetin has protective effects against retinal damage in vitro and in vivo, suggesting that the mechanism may inhibit increase in caspase-3 and -9 activities after retinal damage.


Journal of Neuroinflammation | 2013

The growth factor progranulin attenuates neuronal injury induced by cerebral ischemia-reperfusion through the suppression of neutrophil recruitment.

Yusuke Egashira; Yukiya Suzuki; Yukio Azuma; Toshinori Takagi; Keisuke Mishiro; Sou Sugitani; Kazuhiro Tsuruma; Masamitsu Shimazawa; Shinichi Yoshimura; Masanori Kashimata; Toru Iwama; Hideaki Hara

BackgroundTo improve the clinical outcome of patients who suffered ischemic stroke, cerebral ischemia-reperfusion (I/R) injury is one of the major concerns that should be conquered. Inflammatory reactions are considered a major contributor to brain injury following cerebral ischemia, and I/R exacerbates these reactions. The aim of this study was to investigate the possible ameliorative effects of progranulin (PGRN) against I/R injury in mice.MethodsIn vivo I/R was induced in four-week-old male ddY mice by 2 h of MCAO (middle cerebral artery occlusion) followed by 22 h of reperfusion. We evaluate expression of PGRN in I/R brain, efficacy of recombinant-PGRN (r-PGRN) treatment and its therapeutic time-window on I/R injury. Two hours after MCAO, 1.0 ng of r-PRGN or PBS was administered via intracerebroventricular. We assess neutrophil infiltration, expression of tumor necrosis factor (TNF)-α, matrix metalloproteinase-9 (MMP-9) and phosphorylation of nuclear factor-κB (NF-κB) by immunofluorescense staining and Western blotting. We also investigate neutrophil chemotaxis and intercellular adhesion molecule-1 (ICAM-1) expression in vitro inflammation models using isolated neutrophils and endothelial cells.ResultsWe found that expression of PGRN was decreased in the I/R mouse brain. r-PGRN treatment at 2 h after MCAO resulted in a reduction in the infarct volume and decreased brain swelling; this led to an improvement in neurological scores and to a reduction of mortality rate at 24 h and 7 d after MCAO, respectively. Immunohistochemistry, Western blotting, and gelatin zymography also confirmed that r-PGRN treatment suppressed neutrophil recruitment into the I/R brain, and this led to a reduction of NF-κB and MMP-9 activation. In the in vitro inflammation models, PGRN suppressed both the neutrophil chemotaxis and ICAM-1 expression caused by TNF-α in endothelial cells.ConclusionsPGRN exerted ameliorative effects against I/R-induced inflammation, and these effects may be due to the inhibition of neutrophil recruitment into the I/R brain.


BMC Complementary and Alternative Medicine | 2009

Bee products prevent VEGF-induced angiogenesis in human umbilical vein endothelial cells

Hiroshi Izuta; Masamitsu Shimazawa; Kazuhiro Tsuruma; Yoko Araki; Satoshi Mishima; Hideaki Hara

BackgroundVascular endothelial growth factor (VEGF) is a key regulator of pathogenic angiogenesis in diseases such as cancer and diabetic retinopathy. Bee products [royal jelly (RJ), bee pollen, and Chinese red propolis] from the honeybee, Apis mellifera, have been used as traditional health foods for centuries. The aim of this study was to investigate the anti-angiogenic effects of bee products using human umbilical vein endothelial cells (HUVECs).MethodsIn an in vitro tube formation assay, HUVECs and fibroblast cells were incubated for 14 days with VEGF and various concentrations of bee products [RJ, ethanol extract of bee pollen, ethanol extract of Chinese red propolis and its constituent, caffeic acid phenethyl ester (CAPE)]. To clarify the mechanism of in vitro angiogenesis, HUVEC proliferation and migration were induced by VEGF with or without various concentrations of RJ, bee pollen, Chinese red propolis, and CAPE.ResultsRJ, bee pollen, Chinese red propolis, and CAPE significantly suppressed VEGF-induced in vitro tube formation in the descending order: CAPE > Chinese red propolis >> bee pollen > RJ. RJ and Chinese red propolis suppressed both VEGF-induced HUVEC proliferation and migration. In contrast, bee pollen and CAPE suppressed only the proliferation.ConclusionAmong the bee products, Chinese red propolis and CAPE in particular showed strong suppressive effects against VEGF-induced angiogenesis. These findings indicate that Chinese red propolis and CAPE may have potential as preventive and therapeutic agents against angiogenesis-related human diseases.


Biochemical and Biophysical Research Communications | 2009

Sirtuin 1 overexpression mice show a reference memory deficit, but not neuroprotection.

Kenichi Kakefuda; Yasunori Fujita; Atsushi Oyagi; Kana Hyakkoku; Toshio Kojima; Ken Umemura; Kazuhiro Tsuruma; Masamitsu Shimazawa; Masafumi Ito; Yoshinori Nozawa; Hideaki Hara

Sirtuin 1 (SIRT1) is the closest mammalian homologue of yeast silent information regulator 2 (Sir2) and has a role in lifespan modulation. Reportedly, SIRT1 is also linked to neurodegenerative diseases. However, there are limited studies that report the relation between SIRT1 and neurodegenerative diseases using in vivo transgenic (Tg) methods. In the present study, we generated neuron-specific enolase (NSE) SIRT1 Tg mice that overexpress human SIRT1 in neurons. We examined possible neuroprotective effects of SIRT1 overexpression and compared their higher brain functions with those of wild-type (WT) mice. Overexpression of SIRT1 did not have any neuroprotective effects against the neuronal damage induced by ischemia or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). However, SIRT1 Tg mice exhibited a reference memory deficit. These findings suggest that an excessive expression of SIRT1 might induce the memory deficit in mice, but not neuroprotective effects.


Scientific Reports | 2012

The potential of GPNMB as novel neuroprotective factor in amyotrophic lateral sclerosis

Hirotaka Tanaka; Masamitsu Shimazawa; Masataka Kimura; Masafumi Takata; Kazuhiro Tsuruma; Mitsunori Yamada; Hitoshi Takahashi; Isao Hozumi; Jun-ichi Niwa; Yohei Iguchi; Takeshi Nikawa; Gen Sobue; Takashi Inuzuka; Hideaki Hara

Amyotrophic lateral sclerosis (ALS) is an incurable and fatal neurodegenerative disease characterized by the loss of motor neurons. Despite substantial research, the causes of ALS remain unclear. Glycoprotein nonmetastatic melanoma protein B (GPNMB) was identified as an ALS-related factor using DNA microarray analysis with mutant superoxide dismutase (SOD1G93A) mice. GPNMB was greatly induced in the spinal cords of ALS patients and a mouse model as the disease progressed. It was especially expressed in motor neurons and astrocytes. In an NSC34 cell line, glycosylation of GPNMB was inhibited by interaction with SOD1G93A, increasing motor neuron vulnerability, whereas extracellular fragments of GPNMB secreted from activated astrocytes attenuated the neurotoxicity of SOD1G93A in neural cells. Furthermore, GPNMB expression was substantial in the sera of sporadic ALS patients than that of other diseased patients. This study suggests that GPNMB can be a target for therapeutic intervention for suppressing motor neuron degeneration in ALS.


PLOS ONE | 2010

Phosphodiesterase-III inhibitor prevents hemorrhagic transformation induced by focal cerebral ischemia in mice treated with tPA.

Mitsunori Ishiguro; Keisuke Mishiro; Yasuyuki Fujiwara; Huayue Chen; Hiroshi Izuta; Kazuhiro Tsuruma; Masamitsu Shimazawa; Shinichi Yoshimura; Masahiko Satoh; Toru Iwama; Hideaki Hara

The purpose of the present study was to investigate whether cilostazol, a phosphodiesterase-III inhibitor and antiplatelet drug, would prevent tPA-associated hemorrhagic transformation. Mice subjected to 6-h middle cerebral artery occlusion were treated with delayed tPA alone at 6 h, with combined tPA plus cilostazol at 6 h, or with vehicle at 6 h. We used multiple imaging (electron microscopy, spectroscopy), histological and neurobehavioral measures to assess the effects of the treatment at 18 h and 7 days after the reperfusion. To further investigate the mechanism of cilostazol to beneficial effect, we also performed an in vitro study with tPA and a phosphodiesterase-III inhibitor in human brain microvascular endothelial cells, pericytes, and astrocytes. Combination therapy with tPA plus cilostazol prevented development of hemorrhagic transformation, reduced brain edema, prevented endothelial injury via reduction MMP-9 activity, and prevented the blood-brain barrier opening by inhibiting decreased claudin-5 expression. These changes significantly reduced the morbidity and mortality at 18 h and 7 days after the reperfusion. Also, the administration of both drugs prevented injury to brain human endothelial cells and human brain pericytes. The present study indicates that a phosphodiesterase-III inhibitor prevents the hemorrhagic transformation induced by focal cerebral ischemia in mice treated with tPA.

Collaboration


Dive into the Kazuhiro Tsuruma's collaboration.

Top Co-Authors

Avatar

Hideaki Hara

Gifu Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Masamitsu Shimazawa

Gifu Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Shinsuke Nakamura

Gifu Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Yuki Inoue

Gifu Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Mitsue Ishisaka

Gifu Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hirotaka Tanaka

Gifu Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Keisuke Mishiro

Gifu Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshiki Kuse

Gifu Pharmaceutical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge