Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazuki Sawamoto is active.

Publication


Featured researches published by Kazuki Sawamoto.


Diabetes | 2012

CCR5 Plays a Critical Role in Obesity-Induced Adipose Tissue Inflammation and Insulin Resistance by Regulating Both Macrophage Recruitment and M1/M2 Status

Hironori Kitade; Kazuki Sawamoto; Mayumi Nagashimada; Hiroshi Inoue; Yasuhiko Yamamoto; Yoshimichi Sai; Toshinari Takamura; Hiroshi Yamamoto; Ken-ichi Miyamoto; Henry N. Ginsberg; Naofumi Mukaida; Shuichi Kaneko; Tsuguhito Ota

C-C motif chemokine receptor (CCR)2 and its ligand, monocyte chemoattractant protein (MCP)-1, are pivotal for adipose tissue macrophage (ATM) recruitment and the development of insulin resistance. However, other chemokine systems also may play a role in these processes. In this study, we investigated the role of CCR5 in obesity-induced adipose tissue inflammation and insulin resistance. We analyzed expression levels of CCR5 and its ligands in white adipose tissue (WAT) of genetically (ob/ob) and high-fat (HF) diet–induced obese (DIO) mice. Furthermore, we examined the metabolic phenotype of Ccr5−/− mice. CCR5 and its ligands were markedly upregulated in WAT of DIO and ob/ob mice. Fluorescence-activated cell sorter analysis also revealed that DIO mice had a robust increase in CCR5+ cells within ATMs compared with chow-fed mice. Furthermore, Ccr5−/− mice were protected from insulin resistance, glucose intolerance, and hepatic steatosis induced by HF feeding. The effects of loss of CCR5 were related to both reduction of total ATM content and an M2-dominant shift in ATM polarization. It is noteworthy that transplantation of Ccr5−/− bone marrow was sufficient to protect against impaired glucose tolerance. CCR5 plays a critical role in ATM recruitment and polarization and subsequent development of insulin resistance.


Molecular Genetics and Metabolism | 2015

Therapies for the bone in mucopolysaccharidoses

Shunji Tomatsu; Carlos J. Alméciga-Díaz; Adriana M. Montaño; Hiromasa Yabe; Akemi Tanaka; Vu Chi Dung; Roberto Giugliani; Francyne Kubaski; Robert W. Mason; Eriko Yasuda; Kazuki Sawamoto; William G. Mackenzie; Yasuyuki Suzuki; Kenji E. Orii; Luis Alejandro Barrera; William S. Sly; Tadao Orii

Patients with mucopolysaccharidoses (MPS) have accumulation of glycosaminoglycans in multiple tissues which may cause coarse facial features, mental retardation, recurrent ear and nose infections, inguinal and umbilical hernias, hepatosplenomegaly, and skeletal deformities. Clinical features related to bone lesions may include marked short stature, cervical stenosis, pectus carinatum, small lungs, joint rigidity (but laxity for MPS IV), kyphoscoliosis, lumbar gibbus, and genu valgum. Patients with MPS are often wheelchair-bound and physical handicaps increase with age as a result of progressive skeletal dysplasia, abnormal joint mobility, and osteoarthritis, leading to 1) stenosis of the upper cervical region, 2) restrictive small lung, 3) hip dysplasia, 4) restriction of joint movement, and 5) surgical complications. Patients often need multiple orthopedic procedures including cervical decompression and fusion, carpal tunnel release, hip reconstruction and replacement, and femoral or tibial osteotomy through their lifetime. Current measures to intervene in bone disease progression are not perfect and palliative, and improved therapies are urgently required. Enzyme replacement therapy (ERT), hematopoietic stem cell transplantation (HSCT), and gene therapy are available or in development for some types of MPS. Delivery of sufficient enzyme to bone, especially avascular cartilage, to prevent or ameliorate the devastating skeletal dysplasias remains an unmet challenge. The use of an anti-inflammatory drug is also under clinical study. Therapies should start at a very early stage prior to irreversible bone lesion, and damage since the severity of skeletal dysplasia is associated with level of activity during daily life. This review illustrates a current overview of therapies and their impact for bone lesions in MPS including ERT, HSCT, gene therapy, and anti-inflammatory drugs.


Drug Design Development and Therapy | 2015

Impact of enzyme replacement therapy and hematopoietic stem cell transplantation in patients with Morquio A syndrome

Shunji Tomatsu; Kazuki Sawamoto; Carlos J. Alméciga-Díaz; Tsutomu Shimada; Michael B. Bober; Yasutsugu Chinen; Hiromasa Yabe; Adriana M. Montaño; Roberto Giugliani; Francyne Kubaski; Eriko Yasuda; Alexander Rodríguez-López; Angela J. Espejo-Mojica; Oscar F. Sánchez; Robert W. Mason; Luis Alejandro Barrera; William G. Mackenzie; Tadao Orii

Patients with mucopolysaccharidosis IVA (MPS IVA) can present with systemic skeletal dysplasia, leading to a need for multiple orthopedic surgical procedures, and often become wheelchair bound in their teenage years. Studies on patients with MPS IVA treated by enzyme replacement therapy (ERT) showed a sharp reduction on urinary keratan sulfate, but only modest improvement based on a 6-minute walk test and no significant improvement on a 3-minute climb-up test and lung function test compared with the placebo group, at least in the short-term. Surgical remnants from ERT-treated patients did not show reduction of storage materials in chondrocytes. The impact of ERT on bone lesions in patients with MPS IVA remains limited. ERT seems to be enhanced in a mouse model of MPS IVA by a novel form of the enzyme tagged with a bone-targeting moiety. The tagged enzyme remained in the circulation much longer than untagged native enzyme and was delivered to and retained in bone. Three-month-old MPS IVA mice treated with 23 weekly infusions of tagged enzyme showed marked clearance of the storage materials in bone, bone marrow, and heart valves. When treatment was initiated at birth, reduction of storage materials in tissues was even greater. These findings indicate that specific targeting of the enzyme to bone at an early stage may improve efficacy of ERT for MPS IVA. Recombinant N-acetylgalactosamine-6-sulfate sulfatase (GALNS) in Escherichia coli BL21 (DE3) (erGALNS) and in the methylotrophic yeast Pichia pastoris (prGALNS) has been produced as an alternative to the conventional production in Chinese hamster ovary cells. Recombinant GALNS produced in microorganisms may help to reduce the high cost of ERT and the introduction of modifications to enhance targeting. Although only a limited number of patients with MPS IVA have been treated with hematopoietic stem cell transplantation (HSCT), beneficial effects have been reported. A wheelchair-bound patient with a severe form of MPS IVA was treated with HSCT at 15 years of age and followed up for 10 years. Radiographs showed that the figures of major and minor trochanter appeared. Loud snoring and apnea disappeared. In all, 1 year after bone marrow transplantation, bone mineral density at L2–L4 was increased from 0.372 g/cm2 to 0.548 g/cm2 and was maintained at a level of 0.48±0.054 for the following 9 years. Pulmonary vital capacity increased approximately 20% from a baseline of 1.08 L to around 1.31 L over the first 2 years and was maintained thereafter. Activity of daily living was improved similar to the normal control group. After bilateral osteotomies, a patient can walk over 400 m using hip–knee–ankle–foot orthoses. This long-term observation of a patient shows that this treatment can produce clinical improvements although bone deformity remained unchanged. In conclusion, ERT is a therapeutic option for MPS IVA patients, and there are some indications that HSCT may be an alternative to treat this disease. However, as neither seems to be a curative therapy, at least for the skeletal dysplasia in MPS IVA patients, new approaches are investigated to enhance efficacy and reduce costs to benefit MPS IVA patients.


Expert opinion on orphan drugs | 2015

Enzyme replacement therapy for treating mucopolysaccharidosis type IVA (Morquio A syndrome): effect and limitations

Shunji Tomatsu; Kazuki Sawamoto; Tsutomu Shimada; Michael B. Bober; Francyne Kubaski; Eriko Yasuda; Robert W. Mason; Shaukat Khan; Carlos J. Alméciga-Díaz; Luis Alejandro Barrera; William G. Mackenzie; Tadao Orii

Introduction: Following a Phase III, randomized, double-blind, placebo (PBO)-controlled, multinational study in subjects with mucopolysaccharidosis IVA (MPS IVA), enzyme replacement therapy (ERT) of elosulfase alfa has been approved in several countries. The study was designed to evaluate safety and efficacy of elosulfase alfa in patients with MPS IVA aged 5 years and older. Areas covered: Outcomes of clinical trials for MPS IVA have been described. Subjects received either 2.0 mg/kg/week, 2.0 mg/kg/every other week, or PBO, for 24 weeks. The primary endpoint was the change from baseline 6-min walk test (6MWT) distance compared to PBO. The 6MWT results improved in patients receiving 2 mg/kg weekly compared to PBO. The every other week regimen resulted in walk distances comparable to PBO. There was no change from baseline in the 3 Min Stair Climb Test in both treatment groups. Following completion of the initial study, patients, who continued to receive elosulfase alfa 2 mg/kg weekly (QW) for another 48 weeks (for a total of up to 72-week exposure), did not show additional improvement on 6MWT. Expert opinion: We suggest that ERT is a therapeutic option for MPS IVA, providing a modest effect and the majority of the effects are seen in the soft tissues.


Molecular Genetics and Metabolism | 2016

Obstructive airway in Morquio A syndrome, the past, the present and the future

Shunji Tomatsu; Lauren W. Averill; Kazuki Sawamoto; William G. Mackenzie; Michael B. Bober; Christian Pizarro; Christopher J. Goff; Li Xie; Tadao Orii; Mary C. Theroux

Patients with severe tracheal obstruction in Morquio A syndrome are at risk of dying of sleep apnea and related complications. Tracheal obstruction also leads to life-threatening complications during anesthesia as a result of the difficulty in managing the upper airway due to factors inherent to the Morquio A syndrome, compounded by the difficulty in intubating the trachea. A detailed description of the obstructive pathology of the trachea is not available in the literature probably due to lack of a homogenous group of Morquio A patients to study at any one particular center. We present a series of cases with significant tracheal obstruction who were unrecognized due to the difficulty in interpreting tracheal narrowing airway symptoms. Our goal is to provide the guidelines in the management of these patients that allow earlier recognition and intervention of tracheal obstruction. Sagittal MRI images of the cervical spine of 28 Morquio A patients (12±8.14years) showed that19/28 (67.9%) patients had at least 25% tracheal narrowing and that narrowing worsened with age (all 8 patients over 15years had greater than 50% narrowing). Eight out of 28 patients were categorized as severe (>75%) tracheal narrowing when images were evaluated in neutral head and neck position. Of the 19 patients with tracheal narrowing, compression by the tortuous brachiocephalic artery was the most common cause (n=15). Evidence of such tracheal narrowing was evident as early as at 2years of age. The etiology of tracheal impingement by the brachiocephalic artery in Morquio A appears to be due to a combination of the narrow thoracic inlet crowding structures and the disproportionate growth of trachea and brachiocephalic artery in relationship to the chest cavity leading to tracheal tortuosity. In conclusion, tracheal narrowing, often due to impression from the crossing tortuous brachiocephalic artery, increases with age in Morquio A patients. Greater attention to the trachea is needed when evaluating cervical spine MRIs as well as other imaging and clinical investigations, with the goal of establishing a timely treatment protocol to reduce the mortality rate in this patient population.


Molecular Genetics and Metabolism | 2017

Mucopolysaccharidosis IVA and glycosaminoglycans

Shaukat Khan; Carlos J. Alméciga-Díaz; Kazuki Sawamoto; William G. Mackenzie; Mary C. Theroux; Christian Pizarro; Robert W. Mason; Tadao Orii; Shunji Tomatsu

Mucopolysaccharidosis IVA (MPS IVA; Morquio A: OMIM 253000) is a lysosomal storage disease with an autosomal recessive trait caused by the deficiency of N-acetylgalactosamine-6-sulfate sulfatase. Deficiency of this enzyme leads to accumulation of specific glycosaminoglycans (GAGs): chondroitin-6-sulfate (C6S) and keratan sulfate (KS). C6S and KS are mainly produced in the cartilage. Therefore, the undegraded substrates are stored primarily in cartilage and in its extracellular matrix (ECM), leading to a direct impact on cartilage and bone development, and successive systemic skeletal dysplasia. Chondrogenesis, the earliest phase of skeletal formation, is maintained by cellular interactions with the ECM, growth and differentiation factors, signaling pathways, and transcription factors in a temporal-spatial manner. In patients with MPS IVA, the cartilage is disrupted at birth as a consequence of abnormal chondrogenesis and/or endochondral ossification. The unique skeletal features are distinguished by a disproportional short stature, odontoid hypoplasia, spinal cord compression, tracheal obstruction, pectus carinatum, kyphoscoliosis, platyspondyly, coxa valga, genu valgum, waddling gait, and laxity of joints. In spite of many descriptions of these unique clinical features, delay of diagnosis still happens. The pathogenesis and treatment of systemic skeletal dysplasia in MPS IVA remains an unmet challenge. In this review article, we comprehensively describe historical aspect, property of GAGs, diagnosis, screening, pathogenesis, and current and future therapies of MPS IVA.


Expert opinion on orphan drugs | 2016

Current therapies for Morquio A syndrome and their clinical outcomes

Kazuki Sawamoto; Yasuyuki Suzuki; William G. Mackenzie; Mary C. Theroux; Christian Pizarro; Hiromasa Yabe; Kenji E. Orii; Robert W. Mason; Tadao Orii; Shunji Tomatsu

ABSTRACT Introduction: Morquio A syndrome is characterized by a unique skeletal dysplasia, leading to short neck and trunk, pectus carinatum, laxity of joints, kyphoscoliosis, and tracheal obstruction. Cervical spinal cord compression/inability, a restrictive and obstructive airway, and/or bone deformity and imbalance of growth, are life-threatening to Morquio A patients, leading to a high morbidity and mortality. It is critical to review the current therapeutic approaches with respect to their efficacy and limitations. Areas covered: Patients with progressive skeletal dysplasia often need to undergo orthopedic surgical interventions in the first two decades of life. Recently, we have treated four patients with a new surgery to correct progressive tracheal obstruction. Enzyme replacement therapy (ERT) has been approved clinically. Cell-based therapies such as hematopoietic stem cell therapy (HSCT) and gene therapy are typically one-time, permanent treatments for enzyme deficiencies. We report here on four Morquio A patients treated with HSCT approved in Japan and followed for at least ten years after treatment. Gene therapy is under investigation on mouse models but not yet available as a therapeutic option. Expert opinion: ERT and HSCT in combination with surgical intervention(s) are a therapeutic option for Morquio A; however, the approach for bone and cartilage lesion remains an unmet challenge.


Gastroenterology Research and Practice | 2012

Disposition Kinetics of Taxanes in Peritoneal Dissemination

Ken-ichi Miyamoto; Tsutomu Shimada; Kazuki Sawamoto; Yoshimichi Sai; Yutaka Yonemura

Treatment of cancers in the abdominal cavity, such as peritoneal dissemination, is difficult, but in principle intraperitoneal administration of anticancer drugs is expected to be preferable to systemic administration. Taxane anticancer drugs are used to treat gastric cancer patients with peritoneal dissemination. They are administered as micellar preparations, Taxol and Taxotere, which consist of paclitaxel in Cremophor EL (crEL) and docetaxel in Polysorbate-80 (PS-80), respectively. In this paper we review the disposition kinetics of taxane anticancer drugs after intraperitoneal administration in peritoneal dissemination patients and animal models and also discuss the effect of the surfactant vehicle on the behavior of taxanes.


Molecular Genetics and Metabolism | 2017

Gene therapy for Mucopolysaccharidoses

Kazuki Sawamoto; Hui-Hsuan Chen; Carlos J. Alméciga-Díaz; Robert W. Mason; Shunji Tomatsu

Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders (LSDs) caused by a deficiency of lysosomal enzymes, leading to a wide range of various clinical symptoms depending upon the type of MPS or its severity. Enzyme replacement therapy (ERT), hematopoietic stem cell transplantation (HSCT), substrate reduction therapy (SRT), and various surgical procedures are currently available for patients with MPS. However, there is no curative treatment for this group of disorders. Gene therapy should be a one-time permanent therapy, repairing the cause of enzyme deficiency. Preclinical studies of gene therapy for MPS have been developed over the past three decades. Currently, clinical trials of gene therapy for some types of MPS are ongoing in the United States, some European countries, and Australia. Here, in this review, we summarize the development of gene therapy for MPS in preclinical and clinical trials.


Journal of Pharmaceutical Sciences | 2015

Saturable Hepatic Extraction of Gemcitabine Involves Biphasic Uptake Mediated by Nucleoside Transporters Equilibrative Nucleoside Transporter 1 and 2

Takuya Shimada; Takeo Nakanishi; Hidehiro Tajima; Maiko Yamazaki; Rina Yokono; Makiko Takabayashi; Tsutomu Shimada; Kazuki Sawamoto; Ken-ichi Miyamoto; Hirohisa Kitagawa; Tetsuo Ohta; Ikumi Tamai; Yoshimichi Sai

Hepatic arterial infusion (HAI) chemotherapy with gemcitabine (GEM) is expected to be more effective and safer method to treat hepatic metastasis of pancreatic cancer compared with intravenous administration, because it affords higher tumor exposure with lower systemic exposure. Thus, a key issue for dose selection is the saturability of hepatic uptake of GEM. Therefore, we investigated GEM uptake in rat and human isolated hepatocytes. Hepatic GEM uptake involved high- and low-affinity saturable components with Km values of micromolar and millimolar order, respectively. The uptake was inhibited concentration dependently by S-(4-nitrobenzyl)-6-thioinosine (NBMPR) and was sodium-ion-independent, suggesting a contribution of equilibrative nucleoside transporters (ENTs). The concentration dependence of uptake in the presence of 0.1 μM NBMPR showed a single low-affinity binding site. Therefore, the high- and low-affinity sites correspond to ENT1 and ENT2, respectively. Our results indicate hepatic extraction of GEM is predominantly mediated by the low-affinity site (hENT2), and at clinically relevant hepatic concentrations of GEM, hENT2-mediated uptake would not be completely saturated. This is critical for HAI, because saturation of hepatic uptake would result in a marked increase of GEM concentration in the peripheral circulation, abrogating the advantage of HAI over intravenous administration in terms of severe adverse events.

Collaboration


Dive into the Kazuki Sawamoto's collaboration.

Top Co-Authors

Avatar

Shunji Tomatsu

Alfred I. duPont Hospital for Children

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William G. Mackenzie

Alfred I. duPont Hospital for Children

View shared research outputs
Top Co-Authors

Avatar

Robert W. Mason

Alfred I. duPont Hospital for Children

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eriko Yasuda

Alfred I. duPont Hospital for Children

View shared research outputs
Top Co-Authors

Avatar

Mary C. Theroux

Alfred I. duPont Hospital for Children

View shared research outputs
Researchain Logo
Decentralizing Knowledge