Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazuko Toh is active.

Publication


Featured researches published by Kazuko Toh.


ACS Nano | 2014

Precise Engineering of siRNA Delivery Vehicles to Tumors Using Polyion Complexes and Gold Nanoparticles

Hyun Jin Kim; Hiroyasu Takemoto; Yu Yi; Meng Zheng; Yoshinori Maeda; Hiroyuki Chaya; Kotaro Hayashi; Peng Mi; Frederico Pittella; R. James Christie; Kazuko Toh; Yu Matsumoto; Nobuhiro Nishiyama; Kanjiro Miyata; Kazunori Kataoka

For systemic delivery of siRNA to solid tumors, a size-regulated and reversibly stabilized nanoarchitecture was constructed by using a 20 kDa siRNA-loaded unimer polyion complex (uPIC) and 20 nm gold nanoparticle (AuNP). The uPIC was selectively prepared by charge-matched polyionic complexation of a poly(ethylene glycol)-b-poly(L-lysine) (PEG-PLL) copolymer bearing ∼40 positive charges (and thiol group at the ω-end) with a single siRNA bearing 40 negative charges. The thiol group at the ω-end of PEG-PLL further enabled successful conjugation of the uPICs onto the single AuNP through coordinate bonding, generating a nanoarchitecture (uPIC-AuNP) with a size of 38 nm and a narrow size distribution. In contrast, mixing thiolated PEG-PLLs and AuNPs produced a large aggregate in the absence of siRNA, suggesting the essential role of the preformed uPIC in the formation of nanoarchitecture. The smart uPIC-AuNPs were stable in serum-containing media and more resistant against heparin-induced counter polyanion exchange, compared to uPICs alone. On the other hand, the treatment of uPIC-AuNPs with an intracellular concentration of glutathione substantially compromised their stability and triggered the release of siRNA, demonstrating the reversible stability of these nanoarchitectures relative to thiol exchange and negatively charged AuNP surface. The uPIC-AuNPs efficiently delivered siRNA into cultured cancer cells, facilitating significant sequence-specific gene silencing without cytotoxicity. Systemically administered uPIC-AuNPs showed appreciably longer blood circulation time compared to controls, i.e., bare AuNPs and uPICs, indicating that the conjugation of uPICs onto AuNP was crucial for enhancing blood circulation time. Finally, the uPIC-AuNPs efficiently accumulated in a subcutaneously inoculated luciferase-expressing cervical cancer (HeLa-Luc) model and achieved significant luciferase gene silencing in the tumor tissue. These results demonstrate the strong potential of uPIC-AuNP nanoarchitectures for systemic siRNA delivery to solid tumors.


Biomaterials | 2014

Targeted gene delivery by polyplex micelles with crowded PEG palisade and cRGD moiety for systemic treatment of pancreatic tumors

Zhishen Ge; Qixian Chen; Kensuke Osada; Xueying Liu; Theofilus A. Tockary; Satoshi Uchida; Anjaneyulu Dirisala; Takehiko Ishii; Takahiro Nomoto; Kazuko Toh; Yu Matsumoto; Makoto Oba; Mitsunobu R. Kano; Keiji Itaka; Kazunori Kataoka

Adequate retention in systemic circulation is the preliminary requirement for systemic gene delivery to afford high bioavailability into the targeted site. Polyplex micelle formulated through self-assembly of oppositely-charged poly(ethylene glycol) (PEG)-polycation block copolymer and plasmid DNA has gained tempting perspective upon its advantageous core-shell architecture, where outer hydrophilic PEG shell offers superior stealth behaviors. Aiming to promote these potential characters toward systemic applications, we strategically introduced hydrophobic cholesteryl moiety at the ω-terminus of block copolymer, anticipating to promote not only the stability of polyplex structure but also the tethered PEG crowdedness. Moreover, Mw of PEG in the PEGylated polyplex micelle was elongated up to 20 kDa for expecting further enhancement in PEG crowdedness. Furthermore, cyclic RGD peptide as ligand molecule to integrin receptors was installed at the distal end of PEG in order for facilitating targeted delivery to the tumor site as well as promoting cellular uptake and intracellular trafficking behaviors. Thus constructed cRGD conjugated polyplex micelle with the elevated PEG shielding was challenged to a modeled intractable pancreatic cancer in mice, achieving potent tumor growth suppression by efficient gene expression of antiangiogenic protein (sFlt-1) at the tumor site.


ACS Nano | 2015

Systemic Targeting of Lymph Node Metastasis through the Blood Vascular System by Using Size-Controlled Nanocarriers.

Horacio Cabral; J. Makino; Yu Matsumoto; Peng Mi; Hailiang Wu; Takahiro Nomoto; Kazuko Toh; Naoki Yamada; Yuriko Higuchi; Satoshi Konishi; Mitsunobu R. Kano; Hiroshi Nishihara; Yutaka Miura; Nobuhiro Nishiyama; Kazunori Kataoka

Occult nodal metastases increase the risk of cancer recurrence, demoting prognosis and quality of life of patients. While targeted drug delivery by using systemically administered nanocarriers can potentially control metastatic disease, lymph node metastases have been mainly dealt by locally injecting nanocarriers, which may not always be applicable. Herein, we demonstrated that sub-50 nm polymeric micelles incorporating platinum anticancer drugs could target lymph node metastases in a syngeneic melanoma model after systemic injection, even after removing the primary tumors, limiting the growth of the metastases. By comparing these micelles with clinically used doxorubicin-loaded liposomes (Doxil) having 80 nm, as well as a 70 nm version of the micelles, we found that the targeting efficiency of the nanocarriers against lymph node metastases was associated with their size-regulated abilities to extravasate from the blood vasculature in metastases and to penetrate within the metastatic mass. These findings indicate the potential of sub-50 nm polymeric micelles for developing effective conservative treatments against lymph node metastasis capable of reducing relapse and improving survival.


ACS Nano | 2014

Light-induced cytosolic activation of reduction-sensitive camptothecin-loaded polymeric micelles for spatiotemporally controlled in vivo chemotherapy.

Hung Chi Yen; Horacio Cabral; Peng Mi; Kazuko Toh; Yu Matsumoto; Xueying Liu; Hiroshi Koori; Ahram Kim; Kozo Miyazaki; Yutaka Miura; Nobuhiro Nishiyama; Kazunori Kataoka

Nanomedicines capable of smart operation at the targeted site have the potential to achieve the utmost therapeutic benefits. Providing nanomedicines that respond to endogenous stimuli with an additional external trigger may improve the spatiotemporal control of their functions, while avoiding drawbacks from their inherent tissue distribution. Herein, by exploiting the permeabilization of endosomes induced by photosensitizer agents upon light irradiation, we complemented the intracellular action of polymeric micelles incorporating camptothecin (CPT), which can sharply release the loaded drug in response to the reductive conditions of the cytosol, as an effective strategy for precisely controlling the function of these nanomedicines in vivo, while advancing toward a light-activated chemotherapy. These camptothecin-loaded micelles (CPT/m) were stable in the bloodstream, with minimal drug release in extracellular conditions, leading to prolonged blood circulation and high accumulation in xenografts of rat urothelial carcinoma. With the induction of endosomal permeabilization with the clinically approved photosensitizer, Photofrin, the CPT/m escaped from the endocytic vesicles of cancer cells into the cytosol, as confirmed both in vitro and in vivo by real-time confocal laser microscopies, accelerating the drug release from the micelles only in the irradiated tissues. This spatiotemporal switch significantly enhanced the in vivo antitumor efficacy of CPT/m without eliciting any toxicity, even at a dose 10-fold higher than the maximum tolerated dose of free CPT. Our results indicate the potential of reduction-sensitive drug-loaded polymeric micelles for developing safe chemotherapies after activation by remote triggers, such as light, which are capable of permeabilizing endosomal compartments.


Biomacromolecules | 2014

Aggregation behavior of cationic nanohydrogel particles in human blood serum.

Lutz Nuhn; Sabine Gietzen; Kristin Mohr; Karl Fischer; Kazuko Toh; Kanjiro Miyata; Yu Matsumoto; Kazunori Kataoka; Manfred Schmidt; Rudolf Zentel

For systemic siRNA delivery applications, well-defined drug carriers are required that guarantee stability for both carrier and cargo. Among various concepts progressing in market or final development, cationic nanohydrogel particles may serve as novel transport media especially designed for siRNA-in vivo experiments. In this work, the interaction of nanohydrogel particles with proteins and serum components was studied via dynamic light scattering in human blood serum as novel screening method prior to applications in vivo. The formation of larger aggregates mostly caused by charge interaction with albumin could be suppressed by nanogel loading with siRNA affording a neutral zeta potential for the complex. Preliminary in vivo studies confirmed the results inside the light-scattering cuvette. Although both carrier and cargo may have limited stability on their own under physiological relevant conditions, they can form safe and stable complexes at a charge neutralized ratio and thus making them applicable to systemic siRNA delivery.


ACS Nano | 2014

Multicompartment micelles with adjustable poly(ethylene glycol) shell for efficient in vivo photodynamic therapy

Christopher V. Synatschke; Takahiro Nomoto; Horacio Cabral; Melanie Förtsch; Kazuko Toh; Yu Matsumoto; Kozo Miyazaki; Andreas Hanisch; Felix H. Schacher; Akihiro Kishimura; Nobuhiro Nishiyama; Axel H. E. Müller; Kazunori Kataoka

We describe the preparation of well-defined multicompartment micelles from polybutadiene-block-poly(1-methyl-2-vinyl pyridinium methyl sulfate)-block-poly(methacrylic acid) (BVqMAA) triblock terpolymers and their use as advanced drug delivery systems for photodynamic therapy (PDT). A porphyrazine derivative was incorporated into the hydrophobic core during self-assembly and served as a model drug and fluorescent probe at the same time. The initial micellar corona is formed by negatively charged PMAA and could be gradually changed to poly(ethylene glycol) (PEG) in a controlled fashion through interpolyelectrolyte complex formation of PMAA with positively charged poly(ethylene glycol)-block-poly(L-lysine) (PLL-b-PEG) diblock copolymers. At high degrees of PEGylation, a compartmentalized micellar corona was observed, with a stable bottlebrush-on-sphere morphology as demonstrated by cryo-TEM measurements. By in vitro cellular experiments, we confirmed that the porphyrazine-loaded micelles were PDT-active against A549 cells. The corona composition strongly influenced their in vitro PDT activity, which decreased with increasing PEGylation, correlating with the cellular uptake of the micelles. Also, a PEGylation-dependent influence on the in vivo blood circulation and tumor accumulation was found. Fully PEGylated micelles were detected for up to 24 h in the bloodstream and accumulated in solid subcutaneous A549 tumors, while non- or only partially PEGylated micelles were rapidly cleared and did not accumulate in tumor tissue. Efficient tumor growth suppression was shown for fully PEGylated micelles up to 20 days, demonstrating PDT efficacy in vivo.


Angewandte Chemie | 2016

Systemically Injectable Enzyme‐Loaded Polyion Complex Vesicles as In Vivo Nanoreactors Functioning in Tumors

Yasutaka Anraku; Akihiro Kishimura; Mako Kamiya; Sayaka Tanaka; Takahiro Nomoto; Kazuko Toh; Yu Matsumoto; Shigeto Fukushima; Daiki Sueyoshi; Mitsunobu R. Kano; Yasuteru Urano; Nobuhiro Nishiyama; Kazunori Kataoka

The design and construction of nanoreactors are important for biomedical applications of enzymes, but lipid- and polymeric-vesicle-based nanoreactors have some practical limitations. We have succeeded in preparing enzyme-loaded polyion complex vesicles (PICsomes) through a facile protein-loading method. The preservation of enzyme activity was confirmed even after cross-linking of the PICsomes. The cross-linked β-galactosidase-loaded PICsomes (β-gal@PICsomes) selectively accumulated in the tumor tissue of mice. Moreover, a model prodrug, HMDER-βGal, was successfully converted into a highly fluorescent product, HMDER, at the tumor site, even 4 days after administration of the β-gal@PICsomes. Intravital confocal microscopy showed continuous production of HMDER and its distribution throughout the tumor tissues. Thus, enzyme-loaded PICsomes are useful for prodrug activation at the tumor site and could be a versatile platform for enzyme delivery in enzyme prodrug therapy.


Journal of Controlled Release | 2014

Selective intracellular delivery of proteasome inhibitors through pH-sensitive polymeric micelles directed to efficient antitumor therapy.

Sabina Quader; Horacio Cabral; Yuki Mochida; Takehiko Ishii; Xueying Liu; Kazuko Toh; Hiroaki Kinoh; Yutaka Miura; Nobuhiro Nishiyama; Kazunori Kataoka

The ubiquitin-proteasome system is central in the regulation of cellular proteins controlling cell cycle progression and apoptosis, drawing much interest for developing effective targeted cancer therapies. Herein, we developed a novel pH-responsive polymeric-micelle-based carrier system to effectively deliver the proteasome inhibitor MG132 into cancer cells. MG132 is covalently bound to the block copolymer composed of polyethylene glycol (PEG) and polyaspartate through an acid-labile hydrazone bond. This bond is stable at physiological condition, but hydrolytically degradable in acidic compartments in the cell, such as late-endosomes and lysosomes, and thus, it was used for controlled release of MG132 after EPR-mediated preferential accumulation of the micelles into the tumor. MG132-loaded micelles have monodispersed size distribution with an average diameter of 45nm, and critical micelle concentration is well below 10(-7)M. In vitro studies against several cancer cell lines confirmed that MG132-loaded micelles retained the cytotoxic effect, and this activity was indeed due to the inhibition of proteasome by released MG132 from the micelles. Real-time in vitro confocal-microscopy experiments clearly indicated that MG132-conjugated micelles disintegrated only inside the target cells. By intravital confocal micro-videography, we also confirmed the prolonged circulation of MG132 loaded micelles in the bloodstream, which lead to tumor specific accumulation of micelles, as confirmed by in vivo imaging 24h after injection. These micelles showed significantly lower in vivo toxicity than free MG132, while achieving remarkable antitumor effect against a subcutaneous HeLa-luc tumor model. Our findings create a paradigm for future development of polymeric-micelle-based carrier system for other peptide aldehyde type proteasome inhibitors to make them effective cohort of the existing cancer therapeutic regiments.


Journal of Controlled Release | 2014

Polymeric micelles loaded with platinum anticancer drugs target preangiogenic micrometastatic niches associated with inflammation

Hailiang Wu; Horacio Cabral; Kazuko Toh; Peng Mi; Yi-Chun Chen; Yu Matsumoto; Naoki Yamada; Xueying Liu; Hiroaki Kinoh; Yutaka Miura; Mitsunobu R. Kano; Hiroshi Nishihara; Nobuhiro Nishiyama; Kazunori Kataoka

Nanocarriers have been used for specific delivery of therapeutic agents to solid tumors based on the enhanced permeability and retention in cancerous tissues. Despite metastasis is the main reason of cancer-related death and a priority for nanocarrier-based therapies, the targeting ability of nanocarriers to the metastatic disease is poorly understood, especially for preangiogenic micrometastases as nanocarriers usually use the malignant neovasculature for enhancing their accumulation. Thus, herein, we studied the ability of micellar nanocarriers incorporating (1,2-diaminocyclohexane)platinum(II) (DACHPt) for treating liver metastases of bioluminescent murine colon adenocarcinoma C-26, during overt and preangiogenic metastatic stages. After intravenous injection, DACHPt-loaded micelles (DACHPt/m) effectively inhibited the tumor growth in both metastatic tumor models. While the anticancer activity of the micelles against overt metastases was associated with their selective accumulation in cancerous tissues having neovasculature, the ability of DACHPt/m to target preangiogenic metastases was correlated with the inflammatory microenvironment of the niche. This targeting capability of polymeric micelles to preangiogenic metastasis may provide a novel approach for early diagnosis and treatment of metastases.


Journal of Controlled Release | 2016

Targeted systemic delivery of siRNA to cervical cancer model using cyclic RGD-installed unimer polyion complex-assembled gold nanoparticles.

Yu Yi; Hyun Jin Kim; Peng Mi; Meng Zheng; Hiroyasu Takemoto; Kazuko Toh; Beob Soo Kim; Kotaro Hayashi; Mitsuru Naito; Yu Matsumoto; Kanjiro Miyata; Kazunori Kataoka

For systemic delivery of small interfering RNA (siRNA) to solid tumors, we developed an actively-targeted unimer polyion complex-assembled gold nanoparticle (uPIC-AuNP) by a two-step assembling process. First is the monodispersed uPIC formation from the single molecules of therapeutic siRNA and the block catiomer, cyclic RGD (cRGD) peptide-installed poly(ethylene glycol)-block-poly(l-lysine) modified with lipoic acid (LA) at the ω-end (cRGD-PEG-PLL-LA). Second is the surface decoration of a 20nm-sized AuNP with uPICs. The cRGD-installed uPIC-AuNPs (cRGD-uPIC-AuNP) provided the targetability for selective binding to the cancer and cancer-related endothelial cellular surface, while regulating their size <50nm with a quite narrow distribution. The targeting efficacy of the cRGD-uPIC-AuNP was confirmed by in vitro cellular uptake in cultured cervical cancer (HeLa) cells and in vivo tumor accumulation in a subcutaneous HeLa model after systemic administration, compared with a non-targeted control uPIC-AuNP. Due to the targetability of the ligand, the cRGD-uPIC-AuNP achieved the significantly enhanced gene silencing ability in the subcutaneous HeLa tumor. Ultimately, the systemic delivery of siRNA targeted for papilloma virus-derived E6 oncogene by cRGD-uPIC-AuNP significantly inhibited the growth of subcutaneous HeLa tumor. This research demonstrates that the bottom-up construction of nanocarriers using monodispersed building blocks can be employed as delivery platforms for RNA interference-based cancer therapy.

Collaboration


Dive into the Kazuko Toh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nobuhiro Nishiyama

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Takahiro Nomoto

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge