Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazumasa Uehara is active.

Publication


Featured researches published by Kazumasa Uehara.


Behavioural Brain Research | 2013

Neural mechanisms underlying the changes in ipsilateral primary motor cortex excitability during unilateral rhythmic muscle contraction.

Kazumasa Uehara; Takuya Morishita; Shinji Kubota; Kozo Funase

The aim of this study was to investigate the neural mechanisms underlying the changes in the ipsilateral primary motor cortex (ipsi-M1) excitability induced during the unilateral rhythmic muscle contraction of the first dorsal interosseous (FDI) (rhythmic contraction) muscle with three different frequencies of auditory cues (1, 2, and 3 Hz). The effect of different frequencies of unilateral rhythmic contraction on changes in the ipsi-M1 excitability was assessed using a single-pulse transcranial magnetic stimulation (TMS) technique when subjects were performing the unilateral rhythmic contractions according to each auditory cue frequency. After that, the changes in short intracortical inhibition (SICI)/facilitation (ICF), long intracortical inhibition (LICI) within the ipsi-M1, and interhemispheric inhibition (IHI), as well as dorsal premotor cortex to M1 (PMd-M1), and dorsolateral prefrontal cortex to M1 (DLPFC-M1) connectivity from the contralateral hemisphere to the ipsi-M1 were assessed using paired-pulse TMS techniques. The motor evoked potentials (MEP) induced in the right FDI were recorded. In the results, the ipsi-M1 excitability induced in response to single-pulse TMS was significantly decreased in the 2 Hz conditions, compared with the 1Hz and 3Hz conditions. Furthermore, PMd-M1 connectivity and LICI were significantly modulated depending on the frequency of the unilateral rhythmic contraction. In contrast, the changes in the SICI, ICF, IHI, and DLPFC-M1 were not directly associated with the rhythm frequency. These results suggest that PMd-M1 connectivity and LICI within the ipsi-M1 are likely to preferentially operate to modulate ipsi-M1 excitability during the performance of unilateral rhythmic contraction with different frequencies.


Brain Research | 2011

Increased excitability and reduced intracortical inhibition in the ipsilateral primary motor cortex during a fine-motor manipulation task.

Takuya Morishita; Masato Ninomiya; Kazumasa Uehara; Kozo Funase

The effects of a sensorimotor task on ipsilateral primary motor cortex (ipsi-M1) excitability mediated via the transcallosal pathway, including the changes in short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF), were examined in ten right-handed subjects. Transcranial magnetic stimulation (TMS) was delivered to evoke a motor evoked potential (MEP) from the first dorsal interosseous (FDI). The test-TMS intensity was adjusted to around 120% of the resting motor threshold (rMT). For the paired-pulse TMS paradigm, the conditioning-TMS intensity was set to 80% of the rMT, and the interstimulus interval was fixed at 3 ms for SICI and 12 ms for ICF. As a sensorimotor task, a fine-motor manipulation (FM) task (using chopsticks to pick up, transport, and release glass balls) was adopted. In addition, a pseudo-FM (pFM) task was also performed as a control task. These tasks were carried out using each hand separately. The MEPs evoked during the FM task were markedly increased compared with those evoked during the pFM task, and these effects were not dependent on the electromyographic activity of the FDI performing these tasks. SICI was significantly decreased during the FM task, indicating disinhibition of the ipsi-M1, and these effects were also noted when the subjects used their non-dominant hand. The present findings suggest that the differences between the effects of the FM and pFM tasks on ipsi-M1 excitability were caused by their property.


Journal of Neurophysiology | 2012

Changes in interhemispheric inhibition from active to resting primary motor cortex during a fine-motor manipulation task

Takuya Morishita; Kazumasa Uehara; Kozo Funase

The effect of performance of a sensorimotor task on the interhemispheric inhibition (IHI) induced from the active primary motor cortex (M1) to the resting M1 was examined in 10 right-handed subjects. Transcranial magnetic stimulation (TMS) was performed to produce motor evoked potentials (MEP) in the resting right (Rt)-first dorsal interosseous (FDI). For the paired-TMS paradigm, a conditioning stimulus (CS) was delivered to the Rt-M1, and its intensity was adjusted from 0.6 to 1.4 times the resting motor threshold of the MEP in the left (Lt)-FDI in 0.2 steps. The test stimulus was delivered to the Lt-M1, and its intensity was adjusted to evoke similar MEP amplitudes in the Rt-FDI among the task conditions. The interstimulus interval was fixed at 10 ms. As a sensorimotor task, a fine-motor manipulation (FM) task (using chopsticks to pick up, transport, and release glass balls) was adopted. In addition, an isometric abduction (IA) task was also performed as a control task. These tasks were carried out with the left hand. The IHI from the active to the resting M1 observed during the FM task was markedly increased compared with that induced during the IA task, and this effect was not dependent on the MEP amplitude evoked in the active Lt-FDI by the CS. The present findings suggest that the increased IHI from the active to the resting M1 observed during the FM task was linked to reductions in the activity of the ipsilateral intracortical inhibitory circuit, as we reported previously.


Neuroscience Letters | 2012

Effect of observation combined with motor imagery of a skilled hand-motor task on motor cortical excitability: Difference between novice and expert

Izumi Tsukazaki; Kazumasa Uehara; Takuya Morishita; Masato Ninomiya; Kozo Funase

We examined the effects of observation combined with motor imagery (MI) of a skilled hand-motor task on motor cortex excitability, which was assessed by transcranial magnetic stimulation (TMS). Novices and experts at 3-ball cascade juggling (3BCJ) participated in this study. In one trial, the subjects observed a video clip of 3BCJ while imagining performing it. In addition, the subjects also imagined performing 3BCJ without video clip observation. Motor evoked potentials (MEPs) were recorded from the hand muscles that were activated by the task during each trial. In the novices, the MEP amplitude was significantly increased by video clip observation combined with MI. In contrast, MI without video clip observation significantly increased the MEP amplitude of the experts. These results suggest that action observation of 3BCJ increases the ability of novices to make their MI performing the task. Meanwhile, experts use their own motor program to recall their MI of the task.


Neuroscience Letters | 2011

Excitability changes in the ipsilateral primary motor cortex during rhythmic contraction of finger muscles.

Kazumasa Uehara; Takuya Morishita; Kozo Funase

The aim of this study was to determine whether the excitatory ipsilateral primary motor cortex (ipsi-M1) is affected by changes in the frequency of rhythmic voluntary contraction of the left first dorsal interosseous (FDI) induced by repetitive abduction of the left index-finger. Transcranial magnetic stimulations were delivered to the left M1 during repetitive left index-finger abduction at 1, 2, and 3Hz, and motor evoked potentials (MEPs) were simultaneously evoked in the resting right (Rt)-FDI, Rt-abductor pollicis brevis, and Rt-abductor digiti minimi. The stimulus-response (S-R) curve of the MEP at each frequency was recorded. In addition, F-waves were recorded from the Rt-FDI during these rhythmic contraction tasks in order to examine the changes in spinal motoneuron excitability. MEPs were markedly increased under the 3Hz conditions compared with the other conditions. However, F-waves were hardly changed under these conditions. The S-R curve of the MEP induced under the 3Hz conditions was significantly steeper than the curves produced under other conditions. Our results indicate that the excitability of ipsi-M1 is affected by the frequency of rhythmic voluntary contraction of unilateral finger movement, which may be caused by neural inputs delivered via a transcallosal pathway.


Journal of Neurophysiology | 2014

Functional difference in short- and long-latency interhemispheric inhibitions from active to resting hemisphere during a unilateral muscle contraction

Kazumasa Uehara; Takuya Morishita; Shinji Kubota; Masato Hirano; Kozo Funase

The aim of the present study was to investigate whether there is a functional difference in short-latency (SIHI) and long-latency (LIHI) interhemispheric inhibition from the active to the resting primary motor cortex (M1) with paired-pulse transcranial magnetic stimulation during a unilateral muscle contraction. In nine healthy right-handed participants, IHI was tested from the dominant to the nondominant M1 and vice versa under resting conditions or during performance of a sustained unilateral muscle contraction with the right or left first dorsal interosseous muscle at 10% and 30% maximum voluntary contraction. To obtain measurements of SIHI and LIHI, a conditioning stimulus (CS) was applied over the M1 contralateral to the muscle contraction, followed by a test stimulus over the M1 ipsilateral to the muscle contraction at short (10 ms) and long (40 ms) interstimulus intervals. We used four CS intensities to investigate SIHI and LIHI from the active to the resting M1 systematically. The amount of IHI during the unilateral muscle contractions showed a significant difference between SIHI and LIHI, but the amount of IHI during the resting condition did not. In particular, SIHI during the muscle contractions, but not LIHI, significantly increased with increase in CS intensity compared with the resting condition. Laterality of IHI was not detected in any of the experimental conditions. The present study provides novel evidence that a functional difference between SIHI and LIHI from the active to the resting M1 exists during unilateral muscle contractions.


Journal of Electromyography and Kinesiology | 2014

Inter-individual variation in reciprocal Ia inhibition is dependent on the descending volleys delivered from corticospinal neurons to Ia interneurons.

Shinji Kubota; Kazumasa Uehara; Takuya Morishita; Masato Hirano; Kozo Funase

INTRODUCTION We investigated the extent to which the corticospinal inputs delivered to Ia inhibitory interneurons influence the strength of disynaptic reciprocal Ia inhibition. METHODS Seventeen healthy subjects participated in this study. The degree of reciprocal Ia inhibition was determined via short-latency (condition-test interval: 1-3ms) suppression of Sol H-reflex by conditioning stimulation of common peroneal nerve. The effect of corticospinal descending inputs on Ia inhibitory interneurons was assessed by evaluating the conditioning effect of transcranial magnetic stimulation (TMS) on the Sol H-reflex. Then, we determined the relationship between the degree of reciprocal Ia inhibition and the conditioning effect of TMS on the Sol H-reflex. RESULT We found that the degree of reciprocal Ia inhibition and the extent of change in the amplitude of the TMS-conditioned H-reflex, which was measured from short latency facilitation to inhibition, displayed a strong correlation (r=0.76, p<0.01) in the resting conditions. CONCLUSION The extent of reciprocal Ia inhibition is affected by the corticospinal descending inputs delivered to Ia inhibitory interneurons, which might explain the inter-individual variations in reciprocal Ia inhibition.


Neuroreport | 2015

Patterned sensory nerve stimulation enhances the reactivity of spinal Ia inhibitory interneurons.

Shinji Kubota; Masato Hirano; Takuya Morishita; Kazumasa Uehara; Kozo Funase

Patterned sensory nerve stimulation has been shown to induce plastic changes in the reciprocal Ia inhibitory circuit. However, the mechanisms underlying these changes have not yet been elucidated in detail. The aim of the present study was to determine whether the reactivity of Ia inhibitory interneurons could be altered by patterned sensory nerve stimulation. The degree of reciprocal Ia inhibition, the conditioning effects of transcranial magnetic stimulation (TMS) on the soleus (SOL) muscle H-reflex, and the ratio of the maximum H-reflex amplitude versus maximum M-wave (Hmax/Mmax) were examined in 10 healthy individuals. Patterned electrical nerve stimulation was applied to the common peroneal nerve every 1 s (100 Hz-5 train) at the motor threshold intensity of tibialis anterior muscle to induce activity changes in the reciprocal Ia inhibitory circuit. Reciprocal Ia inhibition, the TMS-conditioned H-reflex amplitude, and Hmax/Mmax were recorded before, immediately after, and 15 min after the electrical stimulation. The patterned electrical nerve stimulation significantly increased the degree of reciprocal Ia inhibition and decreased the amplitude of the TMS-conditioned H-reflex in the short-latency inhibition phase, which was presumably mediated by Ia inhibitory interneurons. However, it had no effect on Hmax/Mmax. Our results indicated that patterned sensory nerve stimulation could modulate the activity of Ia inhibitory interneurons, and this change may have been caused by the synaptic modification of Ia inhibitory interneuron terminals. These results may lead to a clearer understanding of the spinal cord synaptic plasticity produced by repetitive sensory inputs.


Motor Control | 2014

Long-Term Practice Induced Plasticity in the Primary Motor Cortex Innervating the Ankle Flexor in Football Juggling Experts

Masato Hirano; Shinji Kubota; Takuya Morishita; Kazumasa Uehara; Shusaku Fujimoto; Kozo Funase

The aim of this study was to investigate the plasticity of M1 innervating the tibialis anterior muscle (TA) induced by the long-term practice of football juggling using a transcranial magnetic stimulation (TMS) technique. Ten football juggling experts and ten novices participated in this study. Motor evoked potentials (MEP) and the H-reflex were recorded from the right TA during isometric dorsiflexion at 10% of maximum voluntary contraction. The MEP input-output curve of the experts was steeper than that of the novices, and reduced short-interval intracortical inhibition and long-interval intracortical inhibition were observed in the experts. In contrast, the ratio of Hmax to Mmax did not differ between the groups. Our results show that football juggling experts displayed enhanced excitability in the M1 innervating the TA, which was induced by the long-term practice of the ankle movements required to perform football juggling well.


PLOS ONE | 2013

Change in the ipsilateral motor cortex excitability is independent from a muscle contraction phase during unilateral repetitive isometric contractions.

Kazumasa Uehara; Takuya Morishita; Shinji Kubota; Kozo Funase

The aim of this study was to investigate the difference in a muscle contraction phase dependence between ipsilateral (ipsi)- and contralateral (contra)-primary motor cortex (M1) excitability during repetitive isometric contractions of unilateral index finger abduction using a transcranial magnetic stimulation (TMS) technique. Ten healthy right-handed subjects participated in this study. We instructed them to perform repetitive isometric contractions of the left index finger abduction following auditory cues at 1 Hz. The force outputs were set at 10, 30, and 50% of maximal voluntary contraction (MVC). Motor evoked potentials (MEP) were obtained from the right and left first dorsal interosseous muscles (FDI). To examine the muscle contraction phase dependence, TMS of ipsi-M1 or contra-M1 was triggered at eight different intervals (0, 20, 40, 60, 80, 100, 300, or 500 ms) after electromyogram (EMG) onset when each interval had reached the setup triggering level. Furthermore, to demonstrate the relationships between the integrated EMG (iEMG) in the active left FDI and the ipsi-M1 excitability, we assessed the correlation between the iEMG in the left FDI for the 100 ms preceding TMS onset and the MEP amplitude in the resting/active FDI for each force output condition. Although contra-M1 excitability was significantly changed after the EMG onset that depends on the muscle contraction phase, the modulation of ipsi-M1 excitability did not differ in response to any muscle contraction phase at the 10% of MVC condition. Also, we found that contra-M1 excitability was significantly correlated with iEMG in all force output conditions, but ipsi-M1 excitability was not at force output levels of below 30% of MVC. Consequently, the modulation of ipsi-M1 excitability was independent from the contraction phase of unilateral repetitive isometric contractions at least low force output.

Collaboration


Dive into the Kazumasa Uehara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge