Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazumi Kawabe is active.

Publication


Featured researches published by Kazumi Kawabe.


Neuroscience | 2008

Cardiovascular function of a glutamatergic projection from the hypothalamic paraventricular nucleus to the nucleus tractus solitarius in the rat.

Tetsuya Kawabe; Vineet C. Chitravanshi; Kazumi Kawabe; Hreday N. Sapru

Experiments were done in urethane-anesthetized, barodenervated, male Wistar rats. Chemical stimulation of the hypothalamic paraventricular nucleus (PVN) by unilateral microinjections of N-methyl-D-aspartic acid (NMDA) elicited increases in mean arterial pressure (MAP) and greater splanchnic nerve activity (GSNA). The increases in the MAP and GSNA induced by chemical stimulation of the PVN were significantly exaggerated by bilateral microinjections of D(-)-2-amino-7-phosphono-heptanoic acid (D-AP7) and 2,3-dioxo-6-nitro-1,2,3,4-tetrahydro-benzo[f]quinoxaline-7-sulfonamide disodium (NBQX) (ionotropic glutamate receptor antagonists) into the medial subnucleus of the nucleus tractus solitarius (mNTS). These results were confirmed by single unit recordings; i.e. excitation of mNTS barosensitive neurons caused by chemical stimulation of the ipsilateral PVN was blocked by application of D-AP7 and NBQX to these neurons. Bilateral microinjections of D-AP7 and NBQX into the mNTS elicited pressor responses which were significantly attenuated by inhibition of PVN neurons by bilateral microinjections of muscimol. Unilateral microinjections of fluorogold into the mNTS resulted in bilateral retrograde labeling of the PVN neurons. Unilateral microinjections of biotinylated dextran amine into the PVN resulted in anterograde labeling of axons and terminals in the mNTS bilaterally and the labeled terminals exhibited vesicular glutamate transporter-2 immunoreactivity. These results indicated that 1) a tonically active glutamatergic bilateral projection from the PVN to the mNTS exists; 2) bilateral blockade of ionotropic glutamate receptors in the mNTS exaggerates the increases in MAP and GSNA, but not heart rate, to the chemical stimulation of the PVN; and 3) this projection may serve as a restraint mechanism for excitatory cardiovascular effects of PVN stimulation.


Brain Research | 2006

Cardiovascular effects of adrenocorticotropin microinjections into the rostral ventrolateral medullary pressor area of the rat.

Tetsuya Kawabe; Vineet C. Chitravanshi; Kazumi Kawabe; Hreday N. Sapru

The presence of adrenocorticotropic hormone (ACTH)-immunoreactive cells and melanocortin (MC) receptors (MC4 and to a lesser extent MC3) has been demonstrated in the medullary reticular formation in the general area where rostral ventrolateral medullary pressor area (RVLM) is located. The importance of RVLM in the regulation of cardiovascular function is well established. Based on these reports, it was hypothesized that ACTH may play a role in the regulation of cardiovascular function. To test this hypothesis, experiments were carried out on artificially ventilated, adult male, urethane-anesthetized and unanesthetized mid-collicular decerebrate rats. The RVLM was identified by microinjections (100 nl) of L-glutamate (L-Glu). Microinjections (100 nl) of ACTH (0.5, 1 and 2 mmol/l) into the RVLM elicited increases in MAP and HR; tachycardic responses were relatively inconsistent. The effects of ACTH were blocked by SHU9119 and agouti-related protein (AGRP). SHU9119 (a synthetic compound) and AGRP (an endogenous peptide) are antagonists for MC4, and to a lesser extent MC3, receptors. The specificity of these antagonists for MC receptors was indicated by their lack of effect on l-Glu responses. Microinjection of ACTH into the RVLM increased the efferent discharge in the greater splanchnic nerve. It was concluded that (1) ACTH exerts excitatory effects on RVLM neurons resulting in pressor and tachycardic responses, (2) these responses were mediated via MC4 and to a lesser extent MC3 receptors in the RVLM, and (3) the pressor effects of ACTH were mediated via sympathetic activation. This is the first report showing central cardiovascular actions of ACTH.


PLOS ONE | 2012

Cardiovascular Responses to Chemical Stimulation of the Hypothalamic Arcuate Nucleus in the Rat: Role of the Hypothalamic Paraventricular Nucleus

Tetsuya Kawabe; Kazumi Kawabe; Hreday N. Sapru

The mechanism of cardiovascular responses to chemical stimulation of the hypothalamic arcuate nucleus (ARCN) was studied in urethane-anesthetized adult male Wistar rats. At the baseline mean arterial pressure (BLMAP) close to normal, ARCN stimulation elicited decreases in MAP and sympathetic nerve activity (SNA). The decreases in MAP elicited by ARCN stimulation were attenuated by either gamma-aminobutyric acid (GABA), neuropeptide Y (NPY), or beta-endorphin receptor blockade in the ipsilateral hypothalamic paraventricular nucleus (PVN). Combined blockade of GABA-A, NPY1 and opioid receptors in the ipsilateral PVN converted the decreases in MAP and SNA to increases in these variables. Conversion of inhibitory effects on the MAP and SNA to excitatory effects following ARCN stimulation was also observed when the BLMAP was decreased to below normal levels by an infusion of sodium nitroprusside. The pressor and tachycardic responses to ARCN stimulation at below normal BLMAP were attenuated by blockade of melanocortin 3/4 (MC3/4) receptors in the ipsilateral PVN. Unilateral blockade of GABA-A receptors in the ARCN increased the BLMAP and heart rate (HR) revealing tonic inhibition of the excitatory neurons in the ARCN. ARCN stimulation elicited tachycardia regardless of the level of BLMAP. ARCN neurons projecting to the PVN were immunoreactive for glutamic acid decarboxylase 67 (GAD67), NPY, and beta-endorphin. These results indicated that: 1) at normal BLMAP, decreases in MAP and SNA induced by ARCN stimulation were mediated via GABA-A, NPY1 and opioid receptors in the PVN, 2) lowering of BLMAP converted decreases in MAP following ARCN stimulation to increases in MAP, and 3) at below normal BLMAP, increases in MAP and HR induced by ARCN stimulation were mediated via MC3/4 receptors in the PVN. These results provide a base for future studies to explore the role of ARCN in cardiovascular diseases.


American Journal of Physiology-heart and Circulatory Physiology | 2009

Cardiovascular responses to microinjections of urocortin 3 into the nucleus tractus solitarius of the rat.

Takeshi Nakamura; Kazumi Kawabe; Hreday N. Sapru

Urocortin 3 (Ucn3) is a new member of the corticotropin-releasing factor (CRF) peptide family and is considered to be a specific and endogenous ligand for CRF type 2 receptors (CRF2Rs). The presence of CRF(2)Rs has been reported in the nucleus tractus solitarius (NTS) of the rat. It was hypothesized that the activation of CRF2Rs in the medial NTS (mNTS) may play a role in cardiovascular regulation. This hypothesis was tested in urethane-anesthetized, artificially ventilated, adult male Wistar rats. Microinjections (100 nl) of Ucn3 (0.03, 0.06, 0.12, and 0.25 mM) into the mNTS of anesthetized rats elicited decreases in mean arterial pressure (MAP: 5.0 +/- 1.0, 21.6 +/- 2.6, 20.0 +/- 2.8, and 12.7 +/- 3.4 mmHg, respectively) and heart rate (HR: 7.8 +/- 2.6, 46.2 +/- 9.3, 34.5 +/- 8.4, and 16.6 +/- 4.9 beats/min, respectively). Microinjections of artificial cerebrospinal fluid (100 nl) into the mNTS did not elicit cardiovascular responses. Maximum decreases in MAP and HR were elicited by 0.06 mM concentration of Ucn3. Cardiovascular responses to Ucn3 were similar in unanesthetized midcollicular decerebrate rats. A bilateral vagotomy completely abolished Ucn3-induced bradycardia. The decreases in MAP and HR elicited by Ucn3 (0.06 mM) were completely blocked by astressin (1 mM; nonselective CRFR antagonist) and K41498 (5 mM; selective CRF2R antagonist). Microinjections of Ucn3 (0.06 mM) into the mNTS decreased the efferent greater splanchnic nerve activity. After the blockade of CRF2Rs in the mNTS, a Ucn3-induced decrease in the efferent sympathetic nerve discharge was abolished. These results indicate that Ucn3 microinjections into the mNTS exerted excitatory effects on the mNTS neurons via CRF2Rs, leading to depressor and bradycardic responses.


American Journal of Physiology-heart and Circulatory Physiology | 2008

Cold pressor test in the rat: medullary and spinal pathways and neurotransmitters

Takeshi Nakamura; Kazumi Kawabe; Hreday N. Sapru

This study was designed to delineate the medullary and spinal pathways mediating the cardiovascular responses to cold pressor test (CPT) and to identify neurotransmitters in these pathways. Experiments were done in barodenervated, urethane-anesthetized, male Wistar rats. The CPT was performed by immersing the limbs and ventral half of the body of the rat in ice-cold water (0.5 degrees C) for 2 min. CPT elicited an immediate increase in mean arterial pressure (MAP), heart rate (HR), and greater splanchnic nerve activity (GSNA). Bilateral blockade of ionotropic glutamate receptors (iGLURs) in the rostral ventrolateral medullary pressor area (RVLM) significantly attenuated the CPT-induced responses. Bilateral blockade of gamma-aminobutyric acid (GABA) receptors, but not iGLURs, in the nucleus ambiguus (nAmb) significantly reduced the CPT-induced increases in HR, but not MAP. Blockade of spinal iGLURs caused a significant reduction in CPT-induced increases in MAP and GSNA, whereas the increases in HR were reduced to a lesser extent. Combination of the blockade of spinal iGLURs and bilateral vagotomy or intravenous atropine almost completely blocked CPT-induced tachycardia. Midcollicular decerebration significantly reduced CPT-induced increases in MAP and HR. These results indicated that: 1) CPT-induced increases in MAP, HR, and GSNA were mediated by activation of iGLURs in the RVLM and spinal cord, 2) activation of GABA receptors in the nAmb also contributed to the CPT-induced tachycardic responses, and 3) brain areas rostral to the brain stem also participated in the CPT-induced pressor and tachycardic responses.


PLOS ONE | 2012

Effect of Barodenervation on Cardiovascular Responses Elicited from the Hypothalamic Arcuate Nucleus of the Rat

Tetsuya Kawabe; Kazumi Kawabe; Hreday N. Sapru

We have previously reported that chemical stimulation of the hypothalamic arcuate nucleus (ARCN) in the rat elicited increases as well as decreases in blood pressure (BP) and sympathetic nerve activity (SNA). The type of response elicited from the ARCN (i.e., increase or decrease in BP and SNA) depended on the level of baroreceptor activity which, in turn, was determined by baseline BP in rats with intact baroreceptors. Based on this information, it was hypothesized that baroreceptor unloading may play a role in the type of response elicited from the ARCN. Therefore, the effect of barodenervation on the ARCN-induced cardiovascular and sympathetic responses and the neurotransmitters in the hypothalamic paraventricular nucleus (PVN) mediating the excitatory responses elicited from the ARCN were investigated in urethane-anesthetized adult male Wistar rats. Bilateral barodenervation converted decreases in mean arterial pressure (MAP) and greater splanchnic nerve activity (GSNA) elicited by chemical stimulation of the ARCN with microinjections of N-methyl-D-aspartic acid to increases in MAP and GSNA and exaggerated the increases in heart rate (HR). Combined microinjections of NBQX and D-AP7 (ionotropic glutamate receptor antagonists) into the PVN in barodenervated rats converted increases in MAP and GSNA elicited by the ARCN stimulation to decreases in MAP and GSNA and attenuated increases in HR. Microinjections of SHU9119 (a melanocortin 3/4 receptor antagonist) into the PVN in barodenervated rats attenuated increases in MAP, GSNA and HR elicited by the ARCN stimulation. ARCN neurons projecting to the PVN were immunoreactive for proopiomelanocortin, alpha-melanocyte stimulating hormone (alpha-MSH) and adrenocorticotropic hormone (ACTH). It was concluded that increases in MAP and GSNA and exaggeration of tachycardia elicited by the ARCN stimulation in barodenervated rats may be mediated via release of alpha-MSH and/or ACTH and glutamate from the ARCN neurons projecting to the PVN.


Brain Research | 2009

Mechanism of heart rate responses elicited by chemical stimulation of the hypothalamic paraventricular nucleus in the rat

Tetsuya Kawabe; Vineet C. Chitravanshi; Takeshi Nakamura; Kazumi Kawabe; Hreday N. Sapru

This study was designed to examine the mechanism of heart rate (HR) responses elicited by the stimulation of hypothalamic paraventricular nucleus (PVN). Experiments were done in urethane-anesthetized, barodenervated, adult, male Wistar rats. Chemical stimulation of the PVN by unilateral microinjections of N-methyl-d-aspartic acid (NMDA) elicited increases in HR which were attenuated by bilateral vagotomy. PVN-induced tachycardia was also attenuated by the blockade of the spinal ionotropic glutamate receptors (iGLURs) which was accomplished by intrathecal injections at T9-T10 or direct application at T1-T4 of iGLUR antagonists. The blockade of spinal iGLURs combined with bilateral vagotomy completely blocked PVN-induced tachycardia. Blockade of GABA receptors in the medial nucleus tractus solitarius (mNTS) also attenuated the PVN-induced tachycardia. Complete blockade of PVN-induced tachycardia was also observed after the blockade of iGLURs in both the spinal cord and mNTS. Combination of the blockade of mNTS GABA receptors and spinal iGLURs also abolished PVN-induced tachycardia. PVN-induced tachycardia was not altered by the blockade of spinal vasopressin or oxytocin receptors at T1-T4. These results suggested that in barodenervated rats: 1) tachycardia elicited by the chemical stimulation of the PVN was mediated via both inhibition of vagal and activation of sympathetic outflows to the heart, 2) the vagal inhibition contributing to the PVN-induced tachycardia was mediated by the iGLURs and GABARs in the mNTS, 3) sympathetic activation contributing to the PVN-induced tachycardia was mediated via spinal iGLURs, and 4) spinal vasopressin and oxytocin receptors were not involved in the mediation of PVN-induced tachycardia.


Experimental Physiology | 2013

Angiotensin‐(1–12) in the rostral ventrolateral medullary pressor area of the rat elicits sympathoexcitatory responses

Hideki Arakawa; Kazumi Kawabe; Hreday N. Sapru

•  What is the central question of this study? Although brain angiotensin‐(1–12), a new member of the RAS, levels are significantly higher than angiotensin II very little information is available on its mechanism of central actions. •  What is the main finding and its importance? This study provides evidence that both ACE and chymase‐mediated conversion of angiotensin‐(1–12) to angiotensin II are key in its cardiovascular actions involving angiotensin II type 1 and not type 2 receptors.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2012

Bradycardic effects of microinjections of urocortin 3 into the nucleus ambiguus of the rat

Vineet C. Chitravanshi; Kazumi Kawabe; Hreday N. Sapru

The presence of urocortin 3 (UCN3) and CRF2 receptors (CRF2R) has been demonstrated in brain tissue. Nucleus ambiguus (nAmb) is the predominant brain area providing parasympathetic innervation to the heart. On the basis of these reports, it was hypothesized that activation of CRF2Rs in the nAmb may elicit cardiac effects. Experiments were carried out in urethane-anesthetized, artificially ventilated, and adult male Wistar rats. Microinjections of l-glutamate (l-GLU, 5 mM) were used to identify the nAmb. Different concentrations of UCN3 (0.031, 0.062, 0.125, 0.25, and 0.5 mM) microinjected into the nAmb elicited decreases in heart rate (HR) (5.3 ± 1, 22 ± 3.3, 38 ± 4.9, 45.7 ± 2.7, and 27.3 ± 2.3 bpm, respectively). The volume of all microinjections was 30 nl. Blood pressure changes concomitant with decreases in HR were not observed. Bradycardia elicited by microinjections of UCN3 (0.25 mM; maximally effective concentration) into the nAmb was significantly (P < 0.05) attenuated by microinjections of selective CRF2R antagonists (K41498, 0.5 mM, and astressin 2B, 0.25 mM) at the same site. Bilateral vagotomy abolished the bradycardic responses to UCN3. These results indicated that activation of CRF2Rs in the nAmb by UCN3 elicited bradycardia, which was vagally mediated. UCNs have been reported to exert cardioprotective effects in heart failure and ischemia/reperfusion injury. In this situation, centrally induced bradycardia by UCN3 would be beneficial. The results of the present investigation provide a platform for future studies on the role of CRF2Rs in the nAmb in pathological states such as heart failure.


Neuroscience | 2007

Microinjections of melanin concentrating hormone into the nucleus tractus solitarius of the rat elicit depressor and bradycardic responses.

S.N. Brown; Vineet C. Chitravanshi; Kazumi Kawabe; Hreday N. Sapru

The presence of melanin-concentrating hormone (MCH) containing processes, projecting from the lateral hypothalamus to the medial nucleus tractus solitarius (mNTS), has been reported in the rat. It was hypothesized that MCH acting within the mNTS may modulate the central regulation of cardiovascular function. This hypothesis was tested in urethane-anesthetized, artificially ventilated, adult male Wistar rats. Microinjections (100 nl) of MCH (0.25, 0.5, 0.75, and 1 mM) into the mNTS of anesthetized rats elicited decreases in mean arterial pressure (20.4+/-1.6, 50.7+/-3.3, 35.7+/-2.8 and 30.0+/-2.6 mm Hg, respectively). The decreases in heart rate in response to these concentrations of MCH were 40.0+/-8.7, 90.0+/-13.0, 48.0+/-7.3 and 48.0+/-8.0 beats/min, respectively. Maximum cardiovascular responses were elicited by a 0.5 mM concentration of MCH. Cardiovascular responses to MCH were similar in unanesthetized mid-collicular decerebrate rats. Control microinjections of normal saline (100 nl) did not elicit any cardiovascular response. Ipsilateral or bilateral vagotomy significantly attenuated MCH-induced bradycardia. Prior microinjections of PMC-3881-PI (2 mM; MCH-1 receptor antagonist) into the mNTS blocked the cardiovascular responses to microinjections of MCH. Microinjection of MCH (0.5 mM) into the mNTS decreased efferent greater splanchnic nerve activity. Direct application of MCH (0.5 mM; 4 nl) to barosensitive nucleus tractus solitarius (NTS) neurons increased their firing rate. These results indicate that: 1) MCH microinjections into the mNTS activate MCH-1 receptors and excite barosensitive NTS neurons, causing a decrease in efferent sympathetic activity and blood pressure, and 2) MCH-induced bradycardia is mediated via the activation of the vagus nerves.

Collaboration


Dive into the Kazumi Kawabe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tetsuya Kawabe

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar

Vineet C. Chitravanshi

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ajay Dhaka

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Ardem Patapoutian

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

B. L. Whitsel

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher Gorini

George Washington University

View shared research outputs
Researchain Logo
Decentralizing Knowledge