Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazumi Matsubara is active.

Publication


Featured researches published by Kazumi Matsubara.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Evidence for different origin of sex chromosomes in snakes, birds, and mammals and step-wise differentiation of snake sex chromosomes

Kazumi Matsubara; Hiroshi Tarui; Michihisa Toriba; Kazuhiko Yamada; Chizuko Nishida-Umehara; Kiyokazu Agata; Yoichi Matsuda

All snake species exhibit genetic sex determination with the ZZ/ZW type of sex chromosomes. To investigate the origin and evolution of snake sex chromosomes, we constructed, by FISH, a cytogenetic map of the Japanese four-striped rat snake (Elaphe quadrivirgata) with 109 cDNA clones. Eleven of the 109 clones were localized to the Z chromosome. All human and chicken homologues of the snake Z-linked genes were located on autosomes, suggesting that the sex chromosomes of snakes, mammals, and birds were all derived from different autosomal pairs of the common ancestor. We mapped the 11 Z-linked genes of E. quadrivirgata to chromosomes of two other species, the Burmese python (Python molurus bivittatus) and the habu (Trimeresurus flavoviridis), to investigate the process of W chromosome differentiation. All and 3 of the 11 clones were localized to both the Z and W chromosomes in P. molurus and E. quadrivirgata, respectively, whereas no cDNA clones were mapped to the W chromosome in T. flavoviridis. Comparative mapping revealed that the sex chromosomes are only slightly differentiated in P. molurus, whereas they are fully differentiated in T. flavoviridis, and E. quadrivirgata is at a transitional stage of sex-chromosome differentiation. The differentiation of sex chromosomes was probably initiated from the distal region on the short arm of the protosex chromosome of the common ancestor, and then deletion and heterochromatization progressed on the sex-specific chromosome from the phylogenetically primitive boids to the more advanced viperids.


Nature | 2015

Sex reversal triggers the rapid transition from genetic to temperature-dependent sex

Clare E. Holleley; Denis O'Meally; Stephen D. Sarre; Jennifer A. Marshall Graves; Tariq Ezaz; Kazumi Matsubara; Bhumika Azad; Xiuwen Zhang; Arthur Georges

Sex determination in animals is amazingly plastic. Vertebrates display contrasting strategies ranging from complete genetic control of sex (genotypic sex determination) to environmentally determined sex (for example, temperature-dependent sex determination). Phylogenetic analyses suggest frequent evolutionary transitions between genotypic and temperature-dependent sex determination in environmentally sensitive lineages, including reptiles. These transitions are thought to involve a genotypic system becoming sensitive to temperature, with sex determined by gene–environment interactions. Most mechanistic models of transitions invoke a role for sex reversal. Sex reversal has not yet been demonstrated in nature for any amniote, although it occurs in fish and rarely in amphibians. Here we make the first report of reptile sex reversal in the wild, in the Australian bearded dragon (Pogona vitticeps), and use sex-reversed animals to experimentally induce a rapid transition from genotypic to temperature-dependent sex determination. Controlled mating of normal males to sex-reversed females produces viable and fertile offspring whose phenotypic sex is determined solely by temperature (temperature-dependent sex determination). The W sex chromosome is eliminated from this lineage in the first generation. The instantaneous creation of a lineage of ZZ temperature-sensitive animals reveals a novel, climate-induced pathway for the rapid transition between genetic and temperature-dependent sex determination, and adds to concern about adaptation to rapid global climate change.


PLOS ONE | 2012

Inference of the Protokaryotypes of Amniotes and Tetrapods and the Evolutionary Processes of Microchromosomes from Comparative Gene Mapping

Yoshinobu Uno; Chizuko Nishida; Hiroshi Tarui; Satoshi Ishishita; Chiyo Takagi; Osamu Nishimura; Junko Ishijima; Hidetoshi Ota; Ayumi Kosaka; Kazumi Matsubara; Yasunori Murakami; Shigeru Kuratani; Naoto Ueno; Kiyokazu Agata; Yoichi Matsuda

Comparative genome analysis of non-avian reptiles and amphibians provides important clues about the process of genome evolution in tetrapods. However, there is still only limited information available on the genome structures of these organisms. Consequently, the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes in tetrapods remain poorly understood. We constructed chromosome maps of functional genes for the Chinese soft-shelled turtle (Pelodiscus sinensis), the Siamese crocodile (Crocodylus siamensis), and the Western clawed frog (Xenopus tropicalis) and compared them with genome and/or chromosome maps of other tetrapod species (salamander, lizard, snake, chicken, and human). This is the first report on the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes inferred from comparative genomic analysis of vertebrates, which cover all major non-avian reptilian taxa (Squamata, Crocodilia, Testudines). The eight largest macrochromosomes of the turtle and chicken were equivalent, and 11 linkage groups had also remained intact in the crocodile. Linkage groups of the chicken macrochromosomes were also highly conserved in X. tropicalis, two squamates, and the salamander, but not in human. Chicken microchromosomal linkages were conserved in the squamates, which have fewer microchromosomes than chicken, and also in Xenopus and the salamander, which both lack microchromosomes; in the latter, the chicken microchromosomal segments have been integrated into macrochromosomes. Our present findings open up the possibility that the ancestral amniotes and tetrapods had at least 10 large genetic linkage groups and many microchromosomes, which corresponded to the chicken macro- and microchromosomes, respectively. The turtle and chicken might retain the microchromosomes of the amniote protokaryotype almost intact. The decrease in number and/or disappearance of microchromosomes by repeated chromosomal fusions probably occurred independently in the amphibian, squamate, crocodilian, and mammalian lineages.


Chromosome Research | 2004

Karyotypic Evolution of Apodemus (Muridae, Rodentia) Inferred from Comparative FISH Analyses

Kazumi Matsubara; Chizuko Nishida-Umehara; Kimiyuki Tsuchiya; Daiki Nukaya; Yoichi Matsuda

We conducted comparative FISH analyses to investigate the chromosomal rearrangements that have occurred during the evolution of the rodent genus Apodemus, which inhabits broadleaf forests in the temperate zone of the Palaearctic region. Chromosome-specific painting probes of the laboratory mouse were hybridized to chromosomes of seven Apodemus species, A. agrarius, A. argenteus, A. gurkha, A. peninsulae, A. semotus, A. speciosus and A. sylvaticus, and homologous chromosomal regions were determined in the species for the study of karyotypic evolution. Differences in the hybridization patterns were found in nine pairs of autosomes among the seven species. The chromosomal location of the 5S rRNA genes on the telomeric region of chromosome 20 was highly conserved in all the species. In contrast, there was much wider variation in the location of the 18S–28S rRNA genes, although they were predominantly located on chromosomes 7, 8 and 12. Phylogenetic relationships of the seven Apodemus species were inferred from the chromosome rearrangements and the chromosomal distribution patterns of the 18S–28S rRNA genes. The karyotypic relationships correlated well with the molecular phylogeny, and A. semotus had the most highly conserved karyotype among the seven species.


Cytogenetic and Genome Research | 2009

Karyological characterization of the butterfly lizard (Leiolepis reevesii rubritaeniata, Agamidae, Squamata) by molecular cytogenetic approach.

Kornsorn Srikulnath; Kazumi Matsubara; Yoshinobu Uno; Amara Thongpan; Saowanee Suputtitada; Somsak Apisitwanich; Yoichi Matsuda; Chizuko Nishida

Karyological characterization of the butterfly lizard (Leiolepis reevesii rubritaeniata) was performed by conventional Giemsa staining, Ag-NOR banding, FISH with the 18S-28S and 5S rRNA genes and telomeric (TTAGGG)n sequences, and CGH. The karyotype was composed of 2 distinct components, macrochromosomes and microchromosomes, and the chromosomal constitution was 2n = 2x = 36 (L4m + L2sm + M2m + S4m + 24 microchromosomes). NORs and the 18S-28S rRNA genes were located at the secondary constriction of the long arm of chromosome 1, and the 5S rRNA genes were localized to the pericentromeric region of chromosome 6. Hybridization signals of (TTAGGG)n sequences were observed at the telomeric ends of all chromosomes and interstitially at the same position as the 18S-28S rRNA genes, suggesting that in the Leiolepinae tandem fusion probably occurred between chromosome 1 and a microchromosome where the 18S-28S rRNA genes were located. CGH analysis, however, failed to identify sex chromosomes, suggesting that this species may have a TSD system or exhibit GSD with morphologically undetectable cryptic sex chromosomes. Homologues of 6 chicken Z-linked genes (ACO1/IREBP, ATP5A1, CHD1, DMRT1, GHR, RPS6) were all mapped to chromosome 2p in the same order as on the snake chromosome 2p.


Chromosome Research | 2009

Karyotypic evolution in squamate reptiles: comparative gene mapping revealed highly conserved linkage homology between the butterfly lizard (Leiolepis reevesii rubritaeniata, Agamidae, Lacertilia) and the Japanese four-striped rat snake (Elaphe quadrivirgata, Colubridae, Serpentes)

Kornsorn Srikulnath; Chizuko Nishida; Kazumi Matsubara; Yoshinobu Uno; Amara Thongpan; Saowanee Suputtitada; Somsak Apisitwanich; Yoichi Matsuda

The butterfly lizard (Leiolepis reevesii rubritaeniata) has the diploid chromosome number of 2n = 36, comprising two distinctive components, macrochromosomes and microchromosomes. To clarify the conserved linkage homology between lizard and snake chromosomes and to delineate the process of karyotypic evolution in Squamata, we constructed a cytogenetic map of L. reevesii rubritaeniata with 54 functional genes and compared it with that of the Japanese four-striped rat snake (E. quadrivirgata, 2n = 36). Six pairs of the lizard macrochromosomes were homologous to eight pairs of the snake macrochromosomes. The lizard chromosomes 1, 2, 4, and 6 corresponded to the snake chromosomes 1, 2, 3, and Z, respectively. LRE3p and LRE3q showed the homology with EQU5 and EQU4, respectively, and LRE5p and LRE5q corresponded to EQU7 and EQU6, respectively. These results suggest that the genetic linkages have been highly conserved between the two species and that their karyotypic difference might be caused by the telomere-to-telomere fusion events followed by inactivation of one of two centromeres on the derived dicentric chromosomes in the lineage of L. reevesii rubritaeniata or the centric fission events of the bi-armed macrochromosomes and subsequent centromere repositioning in the lineage of E. quadrivirgata. The homology with L. reevesii rubritaeniata microchromosomes were also identified in the distal regions of EQU1p and 1q, indicating the occurrence of telomere-to-telomere fusions of microchromosomes to the p and q arms of EQU1.


Cytogenetic and Genome Research | 2009

The ZW micro-sex chromosomes of the Chinese soft-shelled turtle (Pelodiscus sinensis, Trionychidae, Testudines) have the same origin as chicken chromosome 15.

Taiki Kawagoshi; Yoshinobu Uno; Kazumi Matsubara; Yoichi Matsuda; Chizuko Nishida

The Chinese soft-shelled turtle (Pelodiscus sinensis, Trionychidae, Testudines) has ZZ/ZW-type micro-sex chromosomes where the 18S-28S ribosomal RNA genes (18S-28S rDNA) are located. The W chromosome is morphologically differentiated from the Z chromosome by partial deletion and amplification of 18S-28S rDNA and W-specific repetitive sequences. We recently found a functional gene (TOP3B) mapped on the P. sinensis Z chromosome, which is located on chicken (Gallus gallus, GGA) chromosome 15. Then we cloned turtle homologues of 4 other GGA15-linked genes (GIT2, NF2, SBNO1, SF3A1) and localized them to P. sinensis chromosomes. The 4 genes all mapped on the Z chromosome, and 2 of them (SBNO1, SF3A1) were also localized to the W chromosome. Our mapping data suggest that at least one large inversion occurred between GGA15 and the P. sinensis Z chromosome, and that there are homologous regions in the distal portions of both the short and long arms between the Z and W chromosomes. W chromosomal differentiation in P. sinensis probably proceeded by the deletion of the proximal chromosomal region followed by 18S-28S rDNA amplification, after a paracentric inversion occurred at the breakpoints between the distal region of 18S-28S rDNA and the proximal region of SBNO1 on the Z chromosome.


Endocrinology | 2010

Molecular Cloning, Characterization, and Chromosome Mapping of Reptilian Estrogen Receptors

Yoshinao Katsu; Kazumi Matsubara; Satomi Kohno; Yoichi Matsuda; Michihisa Toriba; Kaori Oka; Louis J. Guillette; Yasuhiko Ohta; Taisen Iguchi

In many vertebrates, steroid hormones are essential for ovarian differentiation during a critical developmental stage as well as promoting the growth and differentiation of the adult female reproductive system. Although studies have been extensively conducted in mammals and a few fish, amphibians, and bird species, the molecular mechanisms of sex steroid hormone (estrogens) action have been poorly examined in reptiles. Here, we evaluate hormone receptor and ligand interactions in two species of snake, the Okinawa habu (Protobothrops flavoviridis, Viperidae) and the Japanese four-striped rat snake (Elaphe quadrivirgata, Colubridae) after the isolation of cDNAs encoding estrogen receptor α (ESR1) and estrogen receptor β (ESR2). Using a transient transfection assay with mammalian cells, the transcriptional activity of reptilian (Okinawa habu, Japanese four-striped rat snake, American alligator, and Florida red-belly freshwater turtle) ESR1 and ESR2 was examined. All ESR proteins displayed estrogen-dependent activation of transcription via an estrogen-response element-containing promoter; however, the responsiveness to various estrogens was different. Further, we determined the chromosomal locations of the snake steroid hormone receptor genes. ESR1 and ESR2 genes were localized to the short and long arms of chromosome 1, respectively, whereas androgen receptor was localized to a pair of microchromosomes in the two snake species examined. These data provide basic tools that allow future studies examining receptor-ligand interactions and steroid endocrinology in snakes and also expands our knowledge of sex steroid hormone receptor evolution.


Chromosome Research | 2003

Identification of chromosome rearrangements between the laboratory mouse (Mus musculus) and the Indian spiny mouse (Mus platythrix) by comparative FISH analysis

Kazumi Matsubara; Chizuko Nishida-Umehara; Asato Kuroiwa; Kimiyuki Tsuchiya; Yoichi Matsuda

Comparative chromosome painting was applied to the Indian spiny mouse (Mus platythrix) with mouse (M. musculus) chromosome-specific probes for understanding the process of chromosome rearrangements between the two species. The chromosome locations of the 5S and 18S-28S ribosomal RNA genes and the order of the 119 and Tcp-1 genes in the In(17)2 region of the t-complex were also compared. All the painting probes were successfully hybridized to the Indian spiny mouse chromosomes, and a total of 27 segments homologous to mouse chromosomes were identified. The comparative FISH analysis revealed that tandem fusions were major events in the chromosome evolution of the Indian spiny mouse. In addition, other types of chromosome rearrangements, i.e. reciprocal translocations and insertions, were also included.


PLOS ONE | 2014

Highly differentiated ZW sex microchromosomes in the Australian Varanus species evolved through rapid amplification of repetitive sequences.

Kazumi Matsubara; Stephen D. Sarre; Arthur Georges; Yoichi Matsuda; Jennifer A. Marshall Graves; Tariq Ezaz

Transitions between sex determination systems have occurred in many lineages of squamates and it follows that novel sex chromosomes will also have arisen multiple times. The formation of sex chromosomes may be reinforced by inhibition of recombination and the accumulation of repetitive DNA sequences. The karyotypes of monitor lizards are known to be highly conserved yet the sex chromosomes in this family have not been fully investigated. Here, we compare male and female karyotypes of three Australian monitor lizards, Varanus acanthurus, V. gouldii and V. rosenbergi, from two different clades. V. acanthurus belongs to the acanthurus clade and the other two belong to the gouldii clade. We applied C-banding and comparative genomic hybridization to reveal that these species have ZZ/ZW sex micro-chromosomes in which the W chromosome is highly differentiated from the Z chromosome. In combination with previous reports, all six Varanus species in which sex chromosomes have been identified have ZZ/ZW sex chromosomes, spanning several clades on the varanid phylogeny, making it likely that the ZZ/ZW sex chromosome is ancestral for this family. However, repetitive sequences of these ZW chromosome pairs differed among species. In particular, an (AAT)n microsatellite repeat motif mapped by fluorescence in situ hybridization on part of W chromosome in V. acanthurus only, whereas a (CGG)n motif mapped onto the W chromosomes of V. gouldii and V. rosenbergi. Furthermore, the W chromosome probe for V. acanthurus produced hybridization signals only on the centromeric regions of W chromosomes of the other two species. These results suggest that the W chromosome sequences were not conserved between gouldii and acanthurus clades and that these repetitive sequences have been amplified rapidly and independently on the W chromosome of the two clades after their divergence.

Collaboration


Dive into the Kazumi Matsubara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kimiyuki Tsuchiya

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tariq Ezaz

University of Canberra

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge