Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazunori Kodama is active.

Publication


Featured researches published by Kazunori Kodama.


Radiation Research | 2007

Solid Cancer Incidence in Atomic Bomb Survivors: 1958–1998

Dale L. Preston; Elaine Ron; Shoji Tokuoka; Sachiyo Funamoto; Nobuo Nishi; Midori Soda; Kiyohiko Mabuchi; Kazunori Kodama

Abstract Preston, D. L., Ron, E., Tokuoka, S., Funamoto, S., Nishi, N., Soda, M., Mabuchi, K. and Kodama, K. Solid Cancer Incidence in Atomic Bomb Survivors: 1958–1998. Radiat. Res. 168, 1–64 (2007). This is the second general report on radiation effects on the incidence of solid cancers (cancers other than malignancies of the blood or blood-forming organs) among members of the Life Span Study (LSS) cohort of Hiroshima and Nagasaki atomic bomb survivors. The analyses were based on 17,448 first primary cancers (including non-melanoma skin cancer) diagnosed from 1958 through 1998 among 105,427 cohort members with individual dose estimates who were alive and not known to have had cancer prior to 1958. Radiation-associated relative risks and excess rates were considered for all solid cancers as a group, for 19 specific cancer sites or groups of sites, and for five histology groups. Poisson regression methods were used to investigate the magnitude of the radiation-associated risks, the shape of the dose response, how these risks vary with gender, age at exposure, and attained age, and the evidence for inter-site variation in the levels and patterns of the excess risk. For all solid cancers as a group, it was estimated that about 850 (about 11%) of the cases among cohort members with colon doses in excess of 0.005 Gy were associated with atomic bomb radiation exposure. The data were consistent with a linear dose response over the 0- to 2-Gy range, while there was some flattening of the dose response at higher doses. Furthermore, there is a statistically significant dose response when analyses were limited to cohort members with doses of 0.15 Gy or less. The excess risks for all solid cancers as a group and many individual sites exhibit significant variation with gender, attained age, and age at exposure. It was estimated that, at age 70 after exposure at age 30, solid cancer rates increase by about 35% per Gy (90% CI 28%; 43%) for men and 58% per Gy (43%; 69%) for women. For all solid cancers as a group, the excess relative risk (ERR per Gy) decreases by about 17% per decade increase in age at exposure (90% CI 7%; 25%) after allowing for attained-age effects, while the ERR decreased in proportion to attained age to the power 1.65 (90% CI 2.1; 1.2) after allowing for age at exposure. Despite the decline in the ERR with attained age, excess absolute rates appeared to increase throughout the study period, providing further evidence that radiation-associated increases in cancer rates persist throughout life regardless of age at exposure. For all solid cancers as a group, women had somewhat higher excess absolute rates than men (F:M ratio 1.4; 90% CI 1.1; 1.8), but this difference disappears when the analysis was restricted to non-gender-specific cancers. Significant radiation-associated increases in risk were seen for most sites, including oral cavity, esophagus, stomach, colon, liver, lung, non-melanoma skin, breast, ovary, bladder, nervous system and thyroid. Although there was no indication of a statistically significant dose response for cancers of the pancreas, prostate and kidney, the excess relative risks for these sites were also consistent with that for all solid cancers as a group. Dose–response estimates for cancers of the rectum, gallbladder and uterus were not statistically significant, and there were suggestions that the risks for these sites may be lower than those for all solid cancers combined. However, there was emerging evidence from the present data that exposure as a child may increase risks of cancer of the body of the uterus. Elevated risks were seen for all of the five broadly classified histological groups considered, including squamous cell carcinoma, adenocarcinoma, other epithelial cancers, sarcomas and other non-epithelial cancers. Although the data were limited, there was a significant radiation-associated increase in the risk of cancer occurring in adolescence and young adulthood. In view of the persisting increase in solid cancer risks, the LSS should continue to provide important new information on radiation exposure and solid cancer risks for at least another 15 to 20 years.


Radiation Research | 2012

Studies of the Mortality of Atomic Bomb Survivors, Report 14, 1950–2003: An Overview of Cancer and Noncancer Diseases

Kotaro Ozasa; Yukiko Shimizu; Akihiko Suyama; Fumiyoshi Kasagi; Midori Soda; Eric J. Grant; Hiromi Sugiyama; Kazunori Kodama

This is the 14th report in a series of periodic general reports on mortality in the Life Span Study (LSS) cohort of atomic bomb survivors followed by the Radiation Effects Research Foundation to investigate the late health effects of the radiation from the atomic bombs. During the period 1950–2003, 58% of the 86,611 LSS cohort members with DS02 dose estimates have died. The 6 years of additional follow-up since the previous report provide substantially more information at longer periods after radiation exposure (17% more cancer deaths), especially among those under age 10 at exposure (58% more deaths). Poisson regression methods were used to investigate the magnitude of the radiation-associated risks, the shape of the dose response, and effect modification by gender, age at exposure, and attained age. The risk of all causes of death was positively associated with radiation dose. Importantly, for solid cancers the additive radiation risk (i.e., excess cancer cases per 104 person-years per Gy) continues to increase throughout life with a linear dose–response relationship. The sex-averaged excess relative risk per Gy was 0.42 [95% confidence interval (CI): 0.32, 0.53] for all solid cancer at age 70 years after exposure at age 30 based on a linear model. The risk increased by about 29% per decade decrease in age at exposure (95% CI: 17%, 41%). The estimated lowest dose range with a significant ERR for all solid cancer was 0 to 0.20 Gy, and a formal dose-threshold analysis indicated no threshold; i.e., zero dose was the best estimate of the threshold. The risk of cancer mortality increased significantly for most major sites, including stomach, lung, liver, colon, breast, gallbladder, esophagus, bladder and ovary, whereas rectum, pancreas, uterus, prostate and kidney parenchyma did not have significantly increased risks. An increased risk of non-neoplastic diseases including the circulatory, respiratory and digestive systems was observed, but whether these are causal relationships requires further investigation. There was no evidence of a radiation effect for infectious or external causes of death.


Radiation Research | 2004

Effect of Recent Changes in Atomic Bomb Survivor Dosimetry on Cancer Mortality Risk Estimates

Dale L. Preston; Donald A. Pierce; Yukiko Shimizu; Harry M. Cullings; Shoichiro Fujita; Sachiyo Funamoto; Kazunori Kodama

Abstract Preston, D. L., Pierce, D. A., Shimizu, Y., Cullings, H. M., Fujita, S., Funamoto, S. and Kodama, K. Effect of Recent Changes in Atomic Bomb Survivor Dosimetry on Cancer Mortality Risk Estimates. Radiat. Res. 162, 377–389 (2004). The Radiation Effects Research Foundation has recently implemented a new dosimetry system, DS02, to replace the previous system, DS86. This paper assesses the effect of the change on risk estimates for radiation-related solid cancer and leukemia mortality. The changes in dose estimates were smaller than many had anticipated, with the primary systematic change being an increase of about 10% in γ-ray estimates for both cities. In particular, an anticipated large increase of the neutron component in Hiroshima for low-dose survivors did not materialize. However, DS02 improves on DS86 in many details, including the specifics of the radiation released by the bombs and the effects of shielding by structures and terrain. The data used here extend the last reported follow-up for solid cancers by 3 years, with a total of 10,085 deaths, and extends the follow-up for leukemia by 10 years, with a total of 296 deaths. For both solid cancer and leukemia, estimated age–time patterns and sex difference are virtually unchanged by the dosimetry revision. The estimates of solid-cancer radiation risk per sievert and the curvilinear dose response for leukemia are both decreased by about 8% by the dosimetry revision, due to the increase in the γ-ray dose estimates. The apparent shape of the dose response is virtually unchanged by the dosimetry revision, but for solid cancers, the additional 3 years of follow-up has some effect. In particular, there is for the first time a statistically significant upward curvature for solid cancer on the restricted dose range 0–2 Sv. However, the low-dose slope of a linear-quadratic fit to that dose range should probably not be relied on for risk estimation, since that is substantially smaller than the linear slopes on ranges 0–1 Sv, 0–0.5 Sv, and 0– 0.25 Sv. Although it was anticipated that the new dosimetry system might reduce some apparent dose overestimates for Nagasaki factory workers, this did not materialize, and factory workers have significantly lower risk estimates. Whether or not one makes allowance for this, there is no statistically significant city difference in the estimated cancer risk.


International Journal of Radiation Oncology Biology Physics | 2010

Radiation-Related Heart Disease: Current Knowledge and Future Prospects

Sarah C. Darby; David J. Cutter; Marjan Boerma; Louis S. Constine; Luis F. Fajardo; Kazunori Kodama; Kiyohiko Mabuchi; Lawrence B. Marks; Fred A. Mettler; Lori J. Pierce; Klaus Rüdiger Trott; Edward T.H. Yeh; Roy E. Shore

INTRODUCTIONIt has been recognized since the 1960s that the heart may bedamaged by substantial doses of radiation [>30 Gray (Gy)],such as used to occur during mantle radiotherapy for Hodg-kin lymphoma. During the last few years, however, evidencethat radiation-related heart disease (RRHD) can occur fol-lowing doses below 20 Gy has emerged from several inde-pendent sources. Those sources include studies of breastcancer patients who received mean cardiac doses of 3 to 17Gy when given radiotherapy following surgery and studiesof survivors of the atomic bombings of Japan who receiveddoses of up to 4 Gy.At doses above 30 Gy, an increased risk of RRHD can be-comes apparent within a year or two of exposure, and the riskincreases with higher radiotherapy dose, younger age at irra-diation, and the presence of conventional risk factors. Atlower doses, the typical latency period is much longer andis often more than a decade. The nature and magnitude ofthe risk following lower doses is not well characterized,and it is not yet clear whether there is a threshold dose belowwhich there is no risk.The evidence regarding RRHD comes from several differ-ent disciplines. The present review brings together informa-tion from pathology, radiobiology, cardiology, radiationoncology, and epidemiology; it summarizes current knowl-edge, identifies gaps in that knowledge, and outlines somepotential strategies for filling them.CURRENT KNOWLEDGEPathologyThe pathological expressions of RRHD documented fol-lowing therapeutic irradiation can be broadly reduced tofour conditions: pericarditis, pericardial fibrosis, diffusemyocardial fibrosis, and coronary artery disease (CAD)(1, 2). Radiation may also cause valvular disease, althoughtheevidence for this isnotasstrong.None of these conditionsis specific to radiation.Radiation-related pericarditis is characterized by an exu-date of a variable amount of protein-rich fluid within thepericardial sac (pericardial effusion). Rapid accumulationof this fluid can, in rare cases, cause potentially fatal cardiactamponade. Almost invariably, fibrin accumulates on the


BMJ | 2010

Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950-2003

Yukiko Shimizu; Kazunori Kodama; Nobuo Nishi; Fumiyoshi Kasagi; Akihiko Suyama; Midori Soda; Eric J. Grant; Hiromi Sugiyama; Ritsu Sakata; Hiroko Moriwaki; Mikiko Hayashi; Manami Konda; Roy E. Shore

Objective To investigate the degree to which ionising radiation confers risk of mortality from heart disease and stroke. Design Prospective cohort study with more than 50 years of follow-up. Setting Atomic bomb survivors in Hiroshima and Nagasaki, Japan. Participants 86 611 Life Span Study cohort members with individually estimated radiation doses from 0 to >3 Gy (86% received <0.2 Gy). Main outcome measures Mortality from stroke or heart disease as the underlying cause of death and dose-response relations with atomic bomb radiation. Results About 9600 participants died of stroke and 8400 died of heart disease between 1950 and 2003. For stroke, the estimated excess relative risk per gray was 9% (95% confidence interval 1% to 17%, P=0.02) on the basis of a linear dose-response model, but an indication of possible upward curvature suggested relatively little risk at low doses. For heart disease, the estimated excess relative risk per gray was 14% (6% to 23%, P<0.001); a linear model provided the best fit, suggesting excess risk even at lower doses. However, the dose-response effect over the restricted dose range of 0 to 0.5 Gy was not significant. Prospective data on smoking, alcohol intake, education, occupation, obesity, and diabetes had almost no impact on the radiation risk estimates for either stroke or heart disease, and misdiagnosis of cancers as circulatory diseases could not account for the associations seen. Conclusion Doses above 0.5 Gy are associated with an elevated risk of both stroke and heart disease, but the degree of risk at lower doses is unclear. Stroke and heart disease together account for about one third as many radiation associated excess deaths as do cancers among atomic bomb survivors.


Journal of the National Cancer Institute | 2008

Solid Cancer Incidence in Atomic Bomb Survivors Exposed In Utero or as Young Children

Dale L. Preston; Harry M. Cullings; Akihiko Suyama; Sachiyo Funamoto; Nobuo Nishi; Midori Soda; Kiyohiko Mabuchi; Kazunori Kodama; Fumiyoshi Kasagi; Roy E. Shore

BACKGROUND In utero exposure to radiation is known to increase risks of childhood cancers, and childhood exposure is associated with increased risks of adult-onset cancers. However, little is known about whether in utero exposure to radiation increases risks of adult-onset cancers. METHODS Solid cancer incidence rates were examined among survivors of the atomic bombings of Hiroshima and Nagasaki who were in utero (n = 2452) or younger than 6 years (n = 15388) at the time of the bombings. Poisson regression was used to estimate and compare the levels and temporal patterns of the radiation-associated excess risks of first primary solid cancers among these survivors at ages 12-55. All statistical tests were two-sided. RESULTS There were 94 eligible cancers in the in utero group and 649 in the early childhood group. The excess relative risk (ERR) increased with dose for both in utero (age 50, ERR = 1.0 per Sv, 95% confidence interval [CI] = 0.2 to 2.3 per Sv) and early childhood (age 50, ERR = 1.7 per Sv, 95% CI = 1.1 to 2.5 Sv) exposures. The ERR declined (P = .046) with increasing attained age in the combined cohort. Excess absolute rates (EARs) increased markedly with attained age among those exposed in early childhood but exhibited little change in the in utero group. At age 50, the estimated EARs per 10,000 person-years per Sv were 6.8 (95% CI = <0 to 49) for those exposed in utero and 56 (95% CI = 36 to 79) for those exposed as young children. CONCLUSIONS Both the in utero and early childhood groups exhibited statistically significant dose-related increases in incidence rates of solid cancers. The apparent difference in EARs between the two groups suggests that lifetime risks following in utero exposure may be considerably lower than for early childhood exposure, but further follow-up is needed.


Journal of Epidemiology | 2012

Study Protocol for the Fukushima Health Management Survey

Seiji Yasumura; Mitsuaki Hosoya; Shunichi Yamashita; Kenji Kamiya; Masafumi Abe; Makoto Akashi; Kazunori Kodama; Kotaro Ozasa

Background The accidents that occurred at the Fukushima Daiichi Nuclear Power Plant after the Great East Japan Earthquake on 11 March 2011 have resulted in long-term, ongoing anxiety among the residents of Fukushima, Japan. Soon after the disaster, Fukushima Prefecture launched the Fukushima Health Management Survey to investigate long-term low-dose radiation exposure caused by the accident. Fukushima Medical University took the lead in planning and implementing this survey. The primary purposes of this survey are to monitor the long-term health of residents, promote their future well-being, and confirm whether long-term low-dose radiation exposure has health effects. This report describes the rationale and implementation of the Fukushima Health Management Survey. Methods This cohort study enrolled all people living in Fukushima Prefecture after the earthquake and comprises a basic survey and 4 detailed surveys. The basic survey is to estimate levels of external radiation exposure among all 2.05 million residents. It should be noted that internal radiation levels were estimated by Fukushima Prefecture using whole-body counters. The detailed surveys comprise a thyroid ultrasound examination for all Fukushima children aged 18 years or younger, a comprehensive health check for all residents from the evacuation zones, an assessment of mental health and lifestyles of all residents from the evacuation zones, and recording of all pregnancies and births among all women in the prefecture who were pregnant on 11 March. All data have been entered into a database and will be used to support the residents and analyze the health effects of radiation. Conclusions The low response rate (<30%) to the basic survey complicates the estimation of health effects. There have been no cases of malignancy to date among 38 114 children who received thyroid ultrasound examinations. The importance of mental health care was revealed by the mental health and lifestyle survey and the pregnancy and birth survey. This long-term large-scale epidemiologic study is expected to provide valuable data in the investigation of the health effects of low-dose radiation and disaster-related stress.


Journal of Bone and Mineral Research | 1997

Risk factors for hip fracture in a Japanese cohort

Saeko Fujiwara; Fumiyoshi Kasagi; Michiko Yamada; Kazunori Kodama

Risk factors for hip fracture were determined from a Japanese cohort. A cohort of 4573 people (mean age 58.5 ± 12.2) who participated in the Adult Health Study in 1978–1980 were subsequently followed by biennial examinations up to 1992. Fifty‐five incident hip fractures not due to traffic accidents were identified by medical records during the follow‐up period. Poisson regression analysis showed that baseline low body mass index (BMI), regular alcohol intake, prevalent vertebral fracture, and having five or more children significantly increased the risk of hip fracture, and low milk intake and later age at menarche were marginally associated with increased fracture risk, after multivariable adjustment. Regular alcohol intake doubled the risk of hip fracture (relative risk 1.91, 95% confidence interval 1.07–3.42). Those individuals who had a vertebral fracture had 2.6 times higher risk than those who did not. The risk was 2.5 times higher among women who had five or more children than women with one or two. Body height, health status, marital status, intake of fish, coffee, tea, Japanese tea, smoking, exposure to atomic bomb radiation, and age at menopause were not associated with hip fracture. Relative risk for hip fracture decreased with decreasing number of preventable risk factors (low BMI, low milk intake, and regular alcohol intake). We conclude that many factors, such as BMI, milk intake, alcohol intake, prevalent vertebral fracture, age at menarche, and number of children, are related to the risk of hip fracture, and prevention programs need to focus on reducing preventable risk factors.


Radiation Research | 2013

The Incidence of Leukemia, Lymphoma and Multiple Myeloma among Atomic Bomb Survivors: 1950–2001

Wan-Ling Hsu; Dale L. Preston; Midori Soda; Hiromi Sugiyama; Sachiyo Funamoto; Kazunori Kodama; Akiro Kimura; Nanao Kamada; Hiroo Dohy; Masao Tomonaga; Masako Iwanaga; Yasushi Miyazaki; Harry M. Cullings; Akihiko Suyama; Kotaro Ozasa; Roy E. Shore; Kiyohiko Mabuchi

A marked increase in leukemia risks was the first and most striking late effect of radiation exposure seen among the Hiroshima and Nagasaki atomic bomb survivors. This article presents analyses of radiation effects on leukemia, lymphoma and multiple myeloma incidence in the Life Span Study cohort of atomic bomb survivors updated 14 years since the last comprehensive report on these malignancies. These analyses make use of tumor- and leukemia-registry based incidence data on 113,011 cohort members with 3.6 million person-years of follow-up from late 1950 through the end of 2001. In addition to a detailed analysis of the excess risk for all leukemias other than chronic lymphocytic leukemia or adult T-cell leukemia (neither of which appear to be radiation-related), we present results for the major hematopoietic malignancy types: acute lymphoblastic leukemia, chronic lymphocytic leukemia, acute myeloid leukemia, chronic myeloid leukemia, adult T-cell leukemia, Hodgkin and non-Hodgkin lymphoma and multiple myeloma. Poisson regression methods were used to characterize the shape of the radiation dose-response relationship and, to the extent the data allowed, to investigate variation in the excess risks with gender, attained age, exposure age and time since exposure. In contrast to the previous report that focused on describing excess absolute rates, we considered both excess absolute rate (EAR) and excess relative risk (ERR) models and found that ERR models can often provide equivalent and sometimes more parsimonious descriptions of the excess risk than EAR models. The leukemia results indicated that there was a nonlinear dose response for leukemias other than chronic lymphocytic leukemia or adult T-cell leukemia, which varied markedly with time and age at exposure, with much of the evidence for this nonlinearity arising from the acute myeloid leukemia risks. Although the leukemia excess risks generally declined with attained age or time since exposure, there was evidence that the radiation-associated excess leukemia risks, especially for acute myeloid leukemia, had persisted throughout the follow-up period out to 55 years after the bombings. As in earlier analyses, there was a weak suggestion of a radiation dose response for non-Hodgkin lymphoma among men, with no indication of such an effect among women. There was no evidence of radiation-associated excess risks for either Hodgkin lymphoma or multiple myeloma.


International Journal of Radiation Biology | 2003

Radiation dose-dependent increases in inflammatory response markers in A-bomb survivors

Tomonori Hayashi; Yoichiro Kusunoki; Masayuki Hakoda; Yukari Morishita; Yoshiko Kubo; Mayumi Maki; Fumiyoshi Kasagi; Kazunori Kodama; Donald G. MacPhee; Seishi Kyoizumi

Purpose : The well-documented increases in malignant tumours in the A-bomb survivors have recently been supplemented by reports that non-cancer diseases, including cardiovascular disease, may also have increased in incidence with increasing radiation dose. Given that low-level inflammatory responses are widely accepted as a significant risk factor for such diseases, we undertook a detailed investigation of the long-term effects of ionizing radiation on the levels of the inflammatory markers C-reactive protein (CRP) and interleukin 6 (IL-6) in A-bomb survivors. Materials and methods : Blood samples were taken from 453 participants in a long-term epidemiological cohort of A-bomb survivors. Plasma levels of CRP and IL-6 were measured using standard antibody-mediated procedures. Relationships between CRP or IL-6 levels and radiation dose were then investigated by multivariate regression analysis. Blood lymphocytes from each individual were used for immunophenotyping by flow cytometry with murine monoclonal antibodies to CD3, CD4 and CD8. Results : CRP levels were significantly increased by about 31% Gy −1 of estimated A-bomb radiation (p =0.0001). Higher CRP levels also correlated with age, male gender, body mass index and a history of myocardial infarction. After adjustments for these factors, CRP levels still appeared to have increased significantly with increasing radiation dose (about 28% increase at 1Gy, p =0.0002). IL-6 levels also appeared to have increased with radiation dose by 9.3% at 1Gy (p =0.0003) and after multiple adjustments by 9.8% at 1Gy (p =0.0007). The elevated CRP and IL-6 levels were associated with decreases in the percentages of CD4 + helper T-cells in peripheral blood lymphocyte populations. Conclusions : Our results appear to indicate that exposure to A-bomb radiation has caused significant increases in inflammatory activity that are still demonstrable in the blood of A-bomb survivors and which may lead to increased risks of cardiovascular disease and other non-cancer diseases.

Collaboration


Dive into the Kazunori Kodama's collaboration.

Top Co-Authors

Avatar

Fumiyoshi Kasagi

Radiation Effects Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Saeko Fujiwara

Radiation Effects Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Yukiko Shimizu

Radiation Effects Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Hideo Sasaki

Radiation Effects Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Michiko Yamada

Radiation Effects Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Midori Soda

Radiation Effects Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Akihiko Suyama

Radiation Effects Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Masazumi Akahoshi

Radiation Effects Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Kotaro Ozasa

Radiation Effects Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Nobuo Nishi

Radiation Effects Research Foundation

View shared research outputs
Researchain Logo
Decentralizing Knowledge