Kazuo Nishigaki
Yamaguchi University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kazuo Nishigaki.
Journal of Virology | 2001
Kazuo Nishigaki; Delores Thompson; Charlotte Hanson; Takashi Yugawa; Sandra Ruscetti
ABSTRACT The Friend spleen focus-forming virus (SFFV) encodes a unique envelope glycoprotein, gp55, which allows erythroid cells to proliferate and differentiate in the absence of erythropoietin (Epo). SFFV gp55 has been shown to interact with the Epo receptor complex, causing constitutive activation of various signal-transducing molecules. When injected into adult mice, SFFV induces a rapid erythroleukemia, with susceptibility being determined by the host geneFv-2, which was recently shown to be identical to the gene encoding the receptor tyrosine kinase Stk/Ron. Susceptible, but not resistant, mice encode not only full-length Stk but also a truncated form of the kinase, sf-Stk, which may mediate the biological effects of SFFV infection. To determine whether expression of SFFV gp55 leads to the activation of sf-Stk, we expressed sf-Stk, with or without SFFV gp55, in hematopoietic cells expressing the Epo receptor. Our data indicate that sf-Stk interacts with SFFV gp55 as well as gp55P, the biologically active form of the viral glycoprotein, forming disulfide-linked complexes. This covalent interaction, as well as noncovalent interactions with SFFV gp55, results in constitutive tyrosine phosphorylation of sf-Stk and its association with multiple tyrosine-phosphorylated signal-transducing molecules. In contrast, neither Epo stimulation in the absence of SFFV gp55 expression nor expression of a mutant of SFFV that cannot interact with sf-Stk was able to induce tyrosine phosphorylation of sf-Stk or its association with any signal-transducing molecules. Covalent interaction of sf-Stk with SFFV gp55 and constitutive tyrosine phosphorylation of sf-Stk can also be detected in an erythroleukemia cell line derived from an SFFV-infected mouse. Our results suggest that SFFV gp55 may mediate its biological effects in vivo by interacting with and activating a truncated form of the receptor tyrosine kinase Stk.
Journal of Virology | 2000
Kazuo Nishigaki; Charlotte Hanson; Takashi Ohashi; Delores Thompson; Karen W. Muszynski; Sandra Ruscetti
ABSTRACT The erythroleukemia-inducing Friend spleen focus-forming virus (SFFV) encodes a unique envelope glycoprotein which allows erythroid cells to proliferate and differentiate in the absence of erythropoietin (Epo). In an effort to understand how SFFV causes Epo independence, we have been examining erythroid cells rendered factor independent by SFFV infection for constitutive activation of signal-transducing molecules. Previous studies from our laboratory showed that various signal-transducing molecules known to be activated by Epo, including Stat proteins and components of the Raf-1/MAP kinase pathway, are constitutively activated in SFFV-infected erythroid cells in the absence of Epo. Since another signal transduction pathway involving activation of phosphatidylinositol 3-kinase (PI 3-kinase) after Epo stimulation plays an important role in erythroid cell proliferation and differentiation, we carried out studies to determine if this pathway was also activated in SFFV-infected cells in the absence of Epo. Our studies show that PI 3-kinase is constitutively activated in erythroid cells rendered factor independent by infection with SFFV and that PI 3-kinase activity, but not Epo receptor tyrosine phosphorylation, is required for the proliferation of these cells in the absence of Epo. We further show that in SFFV-infected erythroid cells grown in the absence of Epo, PI 3-kinase associates with the insulin receptor substrate (IRS)-related adapter molecules IRS-2, Gab1, and Gab2, which are constitutively tyrosine phosphorylated in SFFV-infected cells. Finally, Akt, a protein kinase that is one of the downstream effectors of PI 3-kinase, and SHIP, a lipid phosphatase that is important for Akt activation through PI 3-kinase, are both tyrosine phosphorylated in SFFV-infected cells grown in the absence of Epo. Our results indicate that induction of Epo independence by SFFV requires the activation of PI 3-kinase and suggest that constitutive activation of this kinase in SFFV-infected cells may occur primarily through interaction of PI 3-kinase with constitutively phosphorylated IRS-related adapter molecules.
FEBS Letters | 2006
Noriyuki Kanzawa; Kazuo Nishigaki; Takaya Hayashi; Yuichi Ishii; Souichi Furukawa; Ayako Niiro; Fumihiko Yasui; Michinori Kohara; Kouichi Morita; Kouji Matsushima; Mai Quynh Le; Takao Masuda; Mari Kannagi
Severe acute respiratory syndrome (SARS) is characterized by rapidly progressing respiratory failure resembling acute/adult respiratory distress syndrome (ARDS) associated with uncontrolled inflammatory responses. Here, we demonstrated that, among five accessory proteins of SARS coronavirus (SARS‐CoV) tested, 3a/X1 and 7a/X4 were capable of activating nuclear factor kappa B (NF‐κB) and c‐Jun N‐terminal kinase (JNK), and significantly enhanced interleukin 8 (IL‐8) promoter activity. Furthermore, 3a/X1 and 7a/X4 expression in A549 cells enhanced production of inflammatory chemokines that were known to be up‐regulated in SARS‐CoV infection. Our results suggest potential involvement of 3a/X1 and 7a/X4 proteins in the pathological inflammatory responses in SARS.
Journal of Virology | 2012
Yukari Anai; Haruyo Ochi; Shinya Watanabe; So Nakagawa; Maki Kawamura; Takashi Gojobori; Kazuo Nishigaki
ABSTRACT Endogenous retroviruses (ERVs) comprise a significant percentage of the mammalian genome, and it is poorly understood whether they will remain as inactive genomes or emerge as infectious retroviruses. Although several types of ERVs are present in domestic cats, infectious ERVs have not been demonstrated. Here, we report a previously uncharacterized class of endogenous gammaretroviruses, termed ERV-DCs, that is present and hereditary in the domestic cat genome. We have characterized a subset of ERV-DC proviral clones, which are numbered according to their genomic insertions. One of these, ERV-DC10, located in the q12-q21 region on chromosome C1, is an infectious gammaretrovirus capable of infecting a broad range of cells, including human. Our studies indicate that ERV-DC10 entered the genome of domestic cats in the recent past and appeared to translocate to or reintegrate at a distinct locus as infectious ERV-DC18. Insertional polymorphism analysis revealed that 92 of 244 domestic cats had ERV-DC10 on a homozygous or heterozygous locus. ERV-DC-like sequences were found in primate and rodent genomes, suggesting that these ERVs, and recombinant viruses such as RD-114 and BaEV, originated from an ancestor of ERV-DC. We also found that a novel recombinant virus, feline leukemia virus subgroup D (FeLV-D), was generated by ERV-DC env transduction into feline leukemia virus in domestic cats. Our results indicate that ERV-DCs behave as donors and/or acceptors in the generation of infectious, recombinant viruses. The presence of such infectious endogenous retroviruses, which could be harmful or beneficial to the host, may affect veterinary medicine and public health.
Journal of Virology | 2002
Kazuo Nishigaki; Charlotte Hanson; Delores Thompson; Takashi Yugawa; Masaharu Hisasue; Hajime Tsujimoto; Sandra Ruscetti
ABSTRACT We have molecularly cloned a feline leukemia virus (FeLV) (clone 33) from a domestic cat with acute myeloid leukemia (AML). The long terminal repeat (LTR) of this virus, like the LTRs present in FeLV proviruses from other cats with AML, contains an unusual structure in its U3 region upstream of the enhancer (URE) consisting of three tandem direct repeats of 47 bp. To test the disease potential and specificity of this unique FeLV LTR, we replaced the U3 region of the LTR of the erythroleukemia-inducing Friend murine leukemia virus (F-MuLV) with that of FeLV clone 33. When the resulting virus, F33V, was injected into newborn mice, almost all of the mice eventually developed hematopoietic malignancies, with a significant percentage being in the myeloid lineage. This is in contrast to mice injected with an F-MuLV recombinant containing the U3 region of another FeLV that lacks repetitive URE sequences, none of which developed myeloid malignancies. Examination of tumor proviruses from F33V-infected mice failed to detect any changes in FeLV U3 sequences other than that in the URE. Like F-MuLV-infected mice, those infected with the F-MuLV/FeLV recombinants were able to generate and replicate mink cell focus-inducing viruses. Our studies are consistent with the idea that the presence of repetitive sequences upstream of the enhancer in the LTR of FeLV may favor the activation of this promoter in myeloid cells and contribute to the development of malignancies in this hematopoietic lineage.
Proceedings of the National Academy of Sciences of the United States of America | 2005
Kazuo Nishigaki; Charlotte L. Hanson; Tanya M. Jelacic; Delores Thompson; Sandra Ruscetti
Friend spleen focus-forming virus (SFFV) causes rapid erythroleukemia in mice due to expression of its unique envelope glycoprotein, gp55. Erythroid cells expressing SFFV gp55 proliferate in the absence of their normal regulator erythropoietin (Epo) because of constitutive activation of Epo signal transduction pathways. Although SFFV infects many cell types, deregulation of cell growth occurs only when SFFV infects erythroid cells, suggesting that these cells express unique proteins that the virus requires to mediate its biological effects. Not only do erythroid cells express the Epo receptor (EpoR), but those from mice susceptible to SFFV-induced erythroleukemia also express a short form of the receptor tyrosine kinase Stk (sf-Stk). In erythroid cells, SFFV gp55 interacts with the EpoR complex and sf-Stk, leading to activation of the kinase and constitutive activation of signal transducing molecules. In this study, we demonstrate that SFFV gp55 can also deregulate the growth of nonerythroid cells when it is coexpressed with sf-Stk. Expression of SFFV gp55 in rodent fibroblasts engineered to express sf-Stk induced their transformation, as demonstrated by focus formation and anchorage-independent growth in vitro. This transformation by SFFV gp55 requires the kinase activity of sf-Stk and the presence of its extracellular domain but not expression of the EpoR or the tyrosine kinase Jak2, which is required for activation of signal transduction pathways through the EpoR. Thus, expression of SFFV gp55 in nonerythroid cells coexpressing sf-Stk results in their uncontrolled growth, demonstrating a previously unrecognized mechanism for retrovirus transformation of rodent fibroblasts and providing insight into SFFV-induced disease.
Journal of Virology | 2004
Karen Rulli; Takashi Yugawa; Charlotte Hanson; Delores Thompson; Sandra Ruscetti; Kazuo Nishigaki
ABSTRACT The erythroleukemia-inducing Friend spleen focus-forming virus (SFFV) encodes a unique envelope protein, gp55, which interacts with the erythropoietin (Epo) receptor complex, causing proliferation and differentiation of erythroid cells in the absence of Epo. Susceptibility to SFFV-induced erythroleukemia is conferred by the Fv-2 gene, which encodes a short form of the receptor tyrosine kinase Stk/Ron (sf-Stk) only in susceptible strains of mice. We recently demonstrated that sf-Stk becomes activated by forming a strong interaction with SFFV gp55. To examine the biological consequences of activated sf-Stk on erythroid cell growth, we prepared retroviral vectors which express sf-Stk, either in conjunction with gp55 or alone in a constitutively activated mutant form, and tested them for their ability to induce Epo-independent erythroid colonies ex vivo and disease in mice. Our data indicate that both gp55-activated sf-Stk and the constitutively activated mutant of sf-Stk induce erythroid cells from Fv-2-susceptible and Fv-2-resistant (sf-Stk null) mice to form Epo-independent colonies. Mutational analysis of sf-Stk indicated that a functional kinase domain and 8 of its 12 tyrosine residues are required for the induction of Epo-independent colonies. Further studies demonstrated that coexpression of SFFV gp55 with sf-Stk significantly extends the half-life of the kinase. When injected into Fv-2-resistant mice, neither the gp55-activated sf-Stk nor the constitutively activated mutant caused erythroleukemia. Surprisingly, both Fv-2-susceptible and -resistant mice injected with the gp55-sf-Stk vector developed clinical signs not previously associated with SFFV-induced disease. We conclude that sf-Stk, activated by either point mutation or interaction with SFFV gp55, is sufficient to induce Epo-independent erythroid colonies from both Fv-2-susceptible and -resistant mice but is unable to cause erythroleukemia in Fv-2-resistant mice.
International Journal of Cancer | 2009
Masaharu Hisasue; Naho Nagashima; Kazuo Nishigaki; Isao Fukuzawa; Shigeyoshi Ura; Hiromi Katae; Ryo Tsuchiya; Takatsugu Yamada; Atsuhiko Hasegawa; Hajime Tsujimoto
Feline leukemia virus (FeLV) clone33 was obtained from a domestic cat with acute myeloid leukemia (AML). The long terminal repeat (LTR) of this virus, like the LTRs present in FeLV from other cats with AML, differs from the LTRs of other known FeLV in that it has 3 tandem direct 47‐bp repeats in the upstream region of the enhancer (URE). Here, we injected cats with FeLV clone33 and found 41% developed myelodysplastic syndromes (MDS) characterized by peripheral blood cytopenias and dysplastic changes in the bone marrow. Some of the cats with MDS eventually developed AML. The bone marrow of the majority of cats with FeLV clone33 induced MDS produced fewer erythroid and myeloid colonies upon being cultured with erythropoietin or granulocyte‐macrophage colony‐stimulating factor (GM‐SCF) than bone marrow from normal control cats. Furthermore, the bone marrow of some of the cats expressed high‐levels of the apoptosis‐related genes TNF‐α and survivin. Analysis of the proviral sequences obtained from 13 cats with naturally occurring MDS reveal they also bear the characteristic URE repeats seen in the LTR of FeLV clone33 and other proviruses from cats with AML. Deletions and mutations within the enhancer elements are frequently observed in naturally occurring MDS as well as AML. These results suggest that FeLV variants that bear URE repeats in their LTR strongly associate with the induction of both MDS and AML in cats.
Journal of Virology | 2005
Kazuo Nishigaki; Charlotte Hanson; Delores Thompson; Takashi Yugawa; Sandra Ruscetti
ABSTRACT Members of the mitogen-activated protein kinase (MAPK) family, including Jun amino-terminal kinase (JNK) and extracellular signal-related kinase (ERK), play an important role in the proliferation of erythroid cells in response to erythropoietin (Epo). Erythroid cells infected with the Friend spleen focus-forming virus (SFFV) proliferate in the absence of Epo and show constitutive activation of Epo signal transduction pathways. We previously demonstrated that the ERK pathway was constitutively activated in Friend SFFV-infected erythroid cells, and in this study JNK is also shown to be constitutively activated. Pharmacological inhibitors of both the ERK and JNK pathways stopped the proliferation of primary erythroleukemic cells from Friend SFFV-infected mice, with little induction of apoptosis, and furthermore blocked their ability to form Epo-independent colonies. However, only the JNK inhibitor blocked the proliferation of erythroleukemia cell lines derived from these mice. The JNK inhibitor caused significant apoptosis in these cell lines as well as an increase in the fraction of cells in G2/M and undergoing endoreduplication. In contrast, the growth of erythroleukemia cell lines derived from Friend murine leukemia virus (MuLV)-infected mice was inhibited by both the MEK and JNK inhibitors. JNK is important for AP1 activity, and we found that JNK inhibitor treatment reduced AP1 DNA-binding activity in primary erythroleukemic splenocytes from Friend SFFV-infected mice and in erythroleukemia cell lines from Friend MuLV-infected mice but did not alter AP1 DNA binding in erythroleukemia cell lines from Friend SFFV-infected mice. These data suggest that JNK plays an important role in cell proliferation and/or the survival of erythroleukemia cells.
Journal of Virology | 2013
Jumpei Ito; Shinya Watanabe; Takahiro Hiratsuka; Kyohei Kuse; Yuka Odahara; Haruyo Ochi; Maki Kawamura; Kazuo Nishigaki
ABSTRACT The host defense against viral infection is acquired during the coevolution or symbiosis of the host and pathogen. Several cellular factors that restrict retroviral infection have been identified in the hosts. Feline leukemia virus (FeLV) is a gammaretrovirus that is classified into several receptor interference groups, including a novel FeLV-subgroup D (FeLV-D) that we recently identified. FeLV-D is generated by transduction of the env gene of feline endogenous gammaretrovirus of the domestic cat (ERV-DCs) into FeLV. Some ERV-DCs are replication competent viruses which are present and hereditary in cats. We report here the determination of new viral receptor interference groups and the discovery of a soluble antiretroviral factor, termed Refrex-1. Detailed analysis of FeLV-D strains and ERV-DCs showed two receptor interference groups that are distinct from other FeLV subgroups, and Refrex-1 specifically inhibited one of them. Refrex-1 is characterized as a truncated envelope protein of ERV-DC and includes the N-terminal region of surface unit, which is a putative receptor-binding domain, but lacks the transmembrane region. Refrex-1 is efficiently secreted from the cells and appears to cause receptor interference extracellularly. Two variants of Refrex-1 encoded by provirus loci, ERV-DC7 and DC16, are expressed in a broad range of feline tissues. The host retains Refrex-1 as an antiretroviral factor, which may potentially prevent reemergence of the ERVs and the emergence of novel ERV-related viruses in cats. Refrex-1 may have been acquired during endogenization of ERV-DCs and may play an important role in retroviral restriction and antiviral defense in cats.