Kazuo Shiomi
Tokyo University of Marine Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kazuo Shiomi.
Marine Biotechnology | 2006
Tomohiro Honma; Kazuo Shiomi
Sea anemones are a rich source of two classes of peptide toxins, sodium channel toxins and potassium channel toxins, which have been or will be useful tools for studying the structure and function of specific ion channels. Most of the known sodium channel toxins delay channel inactivation by binding to the receptor site 3 and most of the known potassium channel toxins selectively inhibit Kv1 channels. The following peptide toxins are functionally unique among the known sodium or potassium channel toxins: APETx2, which inhibits acid-sensing ion channels in sensory neurons; BDS-I and II, which show selectivity for Kv3.4 channels and APETx1, which inhibits human ether-a-go-go-related gene potassium channels. In addition, structurally novel peptide toxins, such as an epidermal growth factor (EGF)-like toxin (gigantoxin I), have also been isolated from some sea anemones although their functions remain to be clarified.
International Archives of Allergy and Immunology | 2008
Kazuo Shiomi; Yuichiro Sato; Shohei Hamamoto; Hajime Mita; Kuniyoshi Shimakura
Background: Tropomyosin and arginine kinase have been identified as crustacean allergens. During purification of arginine kinase from black tiger shrimp Penaeus monodon, we found a new allergen of 20-kDa. Methods: A 20-kDa allergen was purified from the abdominal muscle of black tiger shrimp by salting-out, anion-exchange HPLC and reverse-phase HPLC. Following digestion of the 20-kDa allergen with lysyl endopeptidase, peptide fragments were isolated by reverse-phase HPLC, and 2 of them were sequenced. The 20-kDa allergen, together with tropomyosin and arginine kinase purified from black tiger shrimp, was evaluated for IgE reactivity by ELISA. Five species of crustaceans (kuruma shrimp, American lobster, pink shrimp, king crab and snow crab) were surveyed for the 20-kDa allergen by immunoblotting. Results: The 20-kDa allergen was purified from black tiger shrimp and identified as a sarcoplasmic calcium-binding protein (SCP) based on the determined amino acid sequences of 2 enzymatic fragments. Of 16 sera from crustacean-allergic patients, 8 and 13 reacted to SCP and tropomyosin, respectively; the reactivity to arginine kinase was weakly recognized with 10 sera. In immunoblotting, an IgE-reactive 20-kDa protein was also detected in kuruma shrimp, American lobster and pink shrimp but not in 2 species of crab. Preadsorption of the sera with black tiger shrimp SCP abolished the IgE reactivity of the 20-kDa protein, suggesting the 20-kDa protein to be an SCP. Conclusions: SCP is a new crustacean allergen, and distribution of IgE-reactive SCP is probably limited to shrimp and crayfish.
Allergy | 2006
A. Kobayashi; Hiroyuki Tanaka; Yuki Hamada; Shoichiro Ishizaki; Yuji Nagashima; Kazuo Shiomi
Background: Fish is one of the most frequent causes of immunoglobulin E (IgE)‐mediated food allergy. Although the fish dark muscle is often ingested with the white muscle, no information about its allergenicity and allergens is available.
Food and Chemical Toxicology | 2003
Yuki Hamada; H. Tanaka; Shoichiro Ishizaki; Masami Ishida; Yuji Nagashima; Kazuo Shiomi
Three species of mackerels (Scomber japonicus, S. australasicus and S. scombrus) are widely consumed and considered to be most frequently involved in incidents of IgE-mediated fish allergy in Japan. In this study, parvalbumin, a possible candidate for the major allergen, was purified from the white muscle of three species of mackerels by gel filtration on Sephadex G-75 and reverse-phase HPLC on TSKgel ODS-120T. All the purified preparations from three species gave a single band of about 11 kDa and were clearly identified as parvalbumins by analyses of their partial amino acid sequences. In ELISA experiments, four of five sera from fish-allergic patients reacted to all the purified parvalbumins, demonstrating that parvalbumin is the major allergen in common with the mackerels. Antigenic cross-reactivity among the mackerel parvalbumins was also established by ELISA inhibition experiments. A cDNA library was constructed from the white muscle of S. japonicus and the cDNA encoding parvalbumin was cloned. The amino acid sequence translated from the nucleotide sequence revealed that the S. japonicus parvalbumin is composed of 108 residues, being a member of beta-type parvalbumins.
FEBS Journal | 2007
Yoichiro Kitani; Chihiro Tsukamoto; GuoHua Zhang; Hiroshi Nagai; Masami Ishida; Shoichiro Ishizaki; Kuniyoshi Shimakura; Kazuo Shiomi; Yuji Nagashima
Fish skin mucus contains a variety of antimicrobial proteins and peptides that seem to play a role in self defense. We previously reported an antibacterial protein in the skin secretion of the rockfish, Sebastes schlegeli, which showed selective antibacterial activity against Gram‐negative bacteria. This study aimed to isolate and structurally and functionally characterize this protein. The antibacterial protein, termed SSAP (S. schlegeli antibacterial protein), was purified to homogeneity by lectin affinity column chromatography, anion‐exchange HPLC and hydroxyapatite HPLC. It was found to be a glycoprotein containing N‐linked glycochains and FAD. Its molecular mass was estimated to be 120 kDa by gel filtration HPLC and 53 kDa by SDS/PAGE, suggesting that it is a homodimer. On the basis of the partial amino‐acid sequence determined, a full‐length cDNA of 2037 bp including an ORF of 1662 bp that encodes 554 amino‐acid residues was cloned by 3′ RACE, 5′ RACE and RT‐PCR. A blast search showed that a mature protein (496 residues) is homologous to l‐amino acid oxidase (LAO) family proteins. SSAP was determined to have LAO activity by the H2O2‐generation assay and substrate specificity for only l‐Lys with a Km of 0.19 mm. It showed potent antibacterial activity against fish pathogens such as Aeromonas hydrophila, Aeromonas salmonicida and Photobacterium damselae ssp. piscicida. The antibacterial activity was completely lost on the addition of catalase, confirming that H2O2 is responsible for the growth inhibition. This study identifies SSAP as a new member of the LAO family and reveals LAO involvement in the innate immunity of fish skin.
Peptides | 2008
Tomohiro Honma; Shino Kawahata; Masami Ishida; Hiroshi Nagai; Yuji Nagashima; Kazuo Shiomi
Four peptide toxins, SHTX I-III with crab-paralyzing activity and SHTX IV with crab lethality, were isolated from the sea anemone Stichodactyla haddoni and their primary structures elucidated by protein sequencing and cDNA cloning. SHTX I (new toxin, 28 residues), II (analogue of SHTX I, 28 residues) and III (Kunitz-type protease inhibitor, 62 residues) are potassium channel toxins and SHTX IV (48 residues) is a member of the type 2 sea anemone sodium channel toxins. The precursor protein of SHTX IV is composed of a signal peptide, propart and mature peptide, while the propart is missing in that of SHTX III. In addition to these four toxins, an epidermal growth factor-like peptide was detected in S. haddoni by RT-PCR.
Toxicon | 1985
Kazuo Shiomi; Eiji Tanaka; Hideaki Yamanaka; Takeaki Kikuchi
Four species of sea anemones in the coastal waters of Japan were surveyed for hemolysins. Powerful hemolysins were detected in Parasicyonis actinostoloides and Anthopleura japonica, whereas extracts of A. fuscoviridis showed much weaker hemolytic activity and those of of Haliplanella luciae no activity. Among the animal erythrocytes tested sheep were most sensitive to the hemolysins of the three positive species. The major hemolysin (parasitoxin) in whole bodies of P. actinostoloides was isolated by ion exchange chromatography, gel filtration and chromatofocusing. In addition to hemolytic activity (119900 HU/mg) it exhibited lethal activity in mice (LD50 65 micrograms/kg, i.v.) and fish Oryzias latipes (approximate minimum lethal concentration 1.5 micrograms/ml). Parasitoxin was slightly basic (pI 7.9) in nature and its amino acid composition was characterized by the absence of half-cystine. The molecular weight was 19,000 by SDS-polyacrylamide gel electrophoresis or 17,000 by sedimentation equilibrium, indicating that parasitoxin has no subunit structure.
FEBS Letters | 1998
Sonomi Minagawa; Masami Ishida; Yuji Nagashima; Kazuo Shiomi
A potassium channel toxin (AeK) was isolated from the sea anemone Actinia equina by gel filtration on Sephadex G‐50 and reverse‐phase HPLC on TSKgel ODS‐120T. AeK and α‐dendrotoxin inhibited the binding of 125I‐α‐dendrotoxin to rat synaptosomal membranes with IC50 of 22 and 0.34 nM, respectively, indicating that AeK is about sixty‐five times less toxic than α‐dendrotoxin. The complete amino acid sequence of AeK was elucidated; it is composed of 36 amino acid residues including six half‐Cys residues. The determined sequence showed that AeK is analogous to the three potassium channel toxins from sea anemones (BgK from Bunodosoma granulifera, ShK from Stichodactyla helianthus and AsKS from Anemonia sulcata), with an especially high sequence homology (86%) with AsKS.
Parasitology Research | 2007
Yukihiro Kobayashi; Shoichiro Ishizaki; Kuniyoshi Shimakura; Yuji Nagashima; Kazuo Shiomi
The nematode Anisakis simplex is a marine parasite that causes allergy as well as anisakiasis. Although five Anisakis allergens have already been identified, immunoblotting studies suggested that unidentified allergens still exist. In this study, an expression cDNA library constructed from A. simplex was subjected to immunoscreening using an Anisakis-allergic patient serum, and two positive clones coding for allergens (named Ani s 5 and 6) were obtained. Ani s 5 (152 amino acid residues) is homologous with nematode proteins belonging to the SXP/RAL-2 protein family and Ani s 6 (84 amino acid residues) with serine protease inhibitors from various animals. Of the 28 patient sera examined, seven and five reacted to recombinant Ani s 5 and 6 expressed in Escherichia coli, respectively. By inhibition immunoblotting experiments using the recombinant allergens as inhibitors, natural Ani s 5 could be identified as a 15-kDa protein in the crude extract of A. simplex but natural Ani s 6 could not be identified probably due to its low expression. In conclusion, Ani s 5 and 6 are new allergens of A. simplex that are specific to some Anisakis-allergic patients.
Toxicon | 2003
Kazuo Shiomi; Tomohiro Honma; Masao Ide; Yuji Nagashima; Masami Ishida; Makoto Chino
Three peptide toxins (gigantoxins I-III) with crab toxicity were isolated from the sea anemone Stichodactyla gigantea by gel filtration on Sephadex G-50 and reverse-phase HPLC on TSKgel ODS-120T and their complete amino acid sequences were determined. Gigantoxins II (44 residues) and III (48 residues) have LD(50) (against crabs) of 70 and 120 microg/kg, respectively, and are analogous to the known type 1 and 2 sea anemone sodium channel toxins, respectively. On the other hand, gigantoxin I (48 residues) is potently paralytic to crabs (ED(50) 215 microg/kg), although its lethality is very weak (LD(50)>1000 microg/kg). Interestingly, gigantoxin I has 31-33% homologies with mammalian epidermal growth factors (EGFs), with the same location of six cysteine residues. In accordance with the sequence similarity, gigantoxin I exhibits EGF activity as evidenced by rounding of A431 cells and tyrosine phosphorylation of the EGF receptor in the cells, although much less potently than human EGF. Gigantoxin I is the first example of EGF-like toxins of natural origin.