Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazuo Takayama is active.

Publication


Featured researches published by Kazuo Takayama.


Molecular Therapy | 2012

Efficient generation of functional hepatocytes from human embryonic stem cells and induced pluripotent stem cells by HNF4α transduction.

Kazuo Takayama; Mitsuru Inamura; Kenji Kawabata; Kazufumi Katayama; Maiko Higuchi; Katsuhisa Tashiro; Aki Nonaka; Fuminori Sakurai; Takao Hayakawa; Miho K. Furue; Hiroyuki Mizuguchi

Hepatocyte-like cells from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are expected to be a useful source of cells drug discovery. Although we recently reported that hepatic commitment is promoted by transduction of SOX17 and HEX into human ESC- and iPSC-derived cells, these hepatocyte-like cells were not sufficiently mature for drug screening. To promote hepatic maturation, we utilized transduction of the hepatocyte nuclear factor 4α (HNF4α) gene, which is known as a master regulator of liver-specific gene expression. Adenovirus vector-mediated overexpression of HNF4α in hepatoblasts induced by SOX17 and HEX transduction led to upregulation of epithelial and mature hepatic markers such as cytochrome P450 (CYP) enzymes, and promoted hepatic maturation by activating the mesenchymal-to-epithelial transition (MET). Thus HNF4α might play an important role in the hepatic differentiation from human ESC-derived hepatoblasts by activating the MET. Furthermore, the hepatocyte like-cells could catalyze the toxication of several compounds. Our method would be a valuable tool for the efficient generation of functional hepatocytes derived from human ESCs and iPSCs, and the hepatocyte-like cells could be used for predicting drug toxicity.Hepatocyte-like cells from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are expected to be a useful source of cells drug discovery. Although we recently reported that hepatic commitment is promoted by transduction of SOX17 and HEX into human ESC- and iPSC-derived cells, these hepatocyte-like cells were not sufficiently mature for drug screening. To promote hepatic maturation, we utilized transduction of the hepatocyte nuclear factor 4α (HNF4α) gene, which is known as a master regulator of liver-specific gene expression. Adenovirus vector-mediated overexpression of HNF4α in hepatoblasts induced by SOX17 and HEX transduction led to upregulation of epithelial and mature hepatic markers such as cytochrome P450 (CYP) enzymes, and promoted hepatic maturation by activating the mesenchymal-to-epithelial transition (MET). Thus HNF4α might play an important role in the hepatic differentiation from human ESC-derived hepatoblasts by activating the MET. Furthermore, the hepatocyte like-cells could catalyze the toxication of several compounds. Our method would be a valuable tool for the efficient generation of functional hepatocytes derived from human ESCs and iPSCs, and the hepatocyte-like cells could be used for predicting drug toxicity.


Biomaterials | 2013

3D spheroid culture of hESC/hiPSC-derived hepatocyte-like cells for drug toxicity testing

Kazuo Takayama; Kenji Kawabata; Yasuhito Nagamoto; Keisuke Kishimoto; Katsuhisa Tashiro; Fuminori Sakurai; Masashi Tachibana; Katsuhiro Kanda; Takao Hayakawa; Miho K. Furue; Hiroyuki Mizuguchi

Although it is expected that hepatocyte-like cells differentiated from human embryonic stem (ES) cells or induced pluripotent stem (iPS) cells will be utilized in drug toxicity testing, the actual applicability of hepatocyte-like cells in this context has not been well examined so far. To generate mature hepatocyte-like cells that would be applicable for drug toxicity testing, we established a hepatocyte differentiation method that employs not only stage-specific transient overexpression of hepatocyte-related transcription factors but also a three-dimensional spheroid culture system using a Nanopillar Plate. We succeeded in establishing protocol that could generate more matured hepatocyte-like cells than our previous protocol. In addition, our hepatocyte-like cells could sensitively predict drug-induced hepatotoxicity, including reactive metabolite-mediated toxicity. In conclusion, our hepatocyte-like cells differentiated from human ES cells or iPS cells have potential to be applied in drug toxicity testing.


Journal of Hepatology | 2012

Generation of metabolically functioning hepatocytes from human pluripotent stem cells by FOXA2 and HNF1α transduction

Kazuo Takayama; Mitsuru Inamura; Kenji Kawabata; Michiko Sugawara; Kiyomi Kikuchi; Maiko Higuchi; Yasuhito Nagamoto; Hitoshi Watanabe; Katsuhisa Tashiro; Fuminori Sakurai; Takao Hayakawa; Miho K. Furue; Hiroyuki Mizuguchi

BACKGROUND & AIMS Hepatocyte-like cells differentiated from human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) can be utilized as a tool for screening for hepatotoxicity in the early phase of pharmaceutical development. We have recently reported that hepatic differentiation is promoted by sequential transduction of SOX17, HEX, and HNF4α into hESC- or hiPSC-derived cells, but further maturation of hepatocyte-like cells is required for widespread use of drug screening. METHODS To screen for hepatic differentiation-promoting factors, we tested the seven candidate genes related to liver development. RESULTS The combination of two transcription factors, FOXA2 and HNF1α, promoted efficient hepatic differentiation from hESCs and hiPSCs. The expression profile of hepatocyte-related genes (such as genes encoding cytochrome P450 enzymes, conjugating enzymes, hepatic transporters, and hepatic nuclear receptors) achieved with FOXA2 and HNF1α transduction was comparable to that obtained in primary human hepatocytes. The hepatocyte-like cells generated by FOXA2 and HNF1α transduction exerted various hepatocyte functions including albumin and urea secretion, and the uptake of indocyanine green and low density lipoprotein. Moreover, these cells had the capacity to metabolize all nine tested drugs and were successfully employed to evaluate drug-induced cytotoxicity. CONCLUSIONS Our method employing the transduction of FOXA2 and HNF1α represents a useful tool for the efficient generation of metabolically functional hepatocytes from hESCs and hiPSCs, and the screening of drug-induced cytotoxicity.


Molecular Therapy | 2011

Efficient Generation of Hepatoblasts From Human ES Cells and iPS Cells by Transient Overexpression of Homeobox Gene HEX

Mitsuru Inamura; Kenji Kawabata; Kazuo Takayama; Katsuhisa Tashiro; Fuminori Sakurai; Kazufumi Katayama; Masashi Toyoda; Hidenori Akutsu; Yoshitaka Miyagawa; Hajime Okita; Nobutaka Kiyokawa; Akihiro Umezawa; Takao Hayakawa; Miho K. Furue; Hiroyuki Mizuguchi

Human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have the potential to differentiate into all cell lineages, including hepatocytes, in vitro. Induced hepatocytes have a wide range of potential application in biomedical research, drug discovery, and the treatment of liver disease. However, the existing protocols for hepatic differentiation of PSCs are not very efficient. In this study, we developed an efficient method to induce hepatoblasts, which are progenitors of hepatocytes, from human ESCs and iPSCs by overexpression of the HEX gene, which is a homeotic gene and also essential for hepatic differentiation, using a HEX-expressing adenovirus (Ad) vector under serum/feeder cell-free chemically defined conditions. Ad-HEX-transduced cells expressed α-fetoprotein (AFP) at day 9 and then expressed albumin (ALB) at day 12. Furthermore, the Ad-HEX-transduced cells derived from human iPSCs also produced several cytochrome P450 (CYP) isozymes, and these P450 isozymes were capable of converting the substrates to metabolites and responding to the chemical stimulation. Our differentiation protocol using Ad vector-mediated transient HEX transduction under chemically defined conditions efficiently generates hepatoblasts from human ESCs and iPSCs. Thus, our methods would be useful for not only drug screening but also therapeutic applications.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Prediction of interindividual differences in hepatic functions and drug sensitivity by using human iPS-derived hepatocytes

Kazuo Takayama; Yuta Morisaki; Shuichi Kuno; Yasuhito Nagamoto; Kazuo Harada; Norihisa Furukawa; Manami Ohtaka; Ken Nishimura; Kazuo Imagawa; Fuminori Sakurai; Masashi Tachibana; Ryo Sumazaki; Mahito Nakanishi; Kazumasa Hirata; Kenji Kawabata; Hiroyuki Mizuguchi

Significance We found that individual cytochrome P450 (CYP) metabolism capacity and drug sensitivity could be predicted by examining them in the primary human hepatocytes–human induced pluripotent stem cells–hepatocyte-like cells (PHH-iPS-HLCs). We also confirmed that interindividual differences of CYP metabolism capacity and drug responsiveness that are due to the diversity of individual single nucleotide polymorphisms in the CYP gene could also be reproduced in the PHH-iPS-HLCs. These findings suggest that interindividual differences in drug metabolism capacity and drug response could be predicted by using HLCs differentiated from human iPS cells. We believe that iPS-HLCs would be a powerful technology not only for accurate and efficient drug development, but also for personalized drug therapy. Interindividual differences in hepatic metabolism, which are mainly due to genetic polymorphism in its gene, have a large influence on individual drug efficacy and adverse reaction. Hepatocyte-like cells (HLCs) differentiated from human induced pluripotent stem (iPS) cells have the potential to predict interindividual differences in drug metabolism capacity and drug response. However, it remains uncertain whether human iPSC-derived HLCs can reproduce the interindividual difference in hepatic metabolism and drug response. We found that cytochrome P450 (CYP) metabolism capacity and drug responsiveness of the primary human hepatocytes (PHH)-iPS-HLCs were highly correlated with those of PHHs, suggesting that the PHH-iPS-HLCs retained donor-specific CYP metabolism capacity and drug responsiveness. We also demonstrated that the interindividual differences, which are due to the diversity of individual SNPs in the CYP gene, could also be reproduced in PHH-iPS-HLCs. We succeeded in establishing, to our knowledge, the first PHH-iPS-HLC panel that reflects the interindividual differences of hepatic drug-metabolizing capacity and drug responsiveness.


Biomaterials | 2012

The promotion of hepatic maturation of human pluripotent stem cells in 3D co-culture using type I collagen and Swiss 3T3 cell sheets

Yasuhito Nagamoto; Katsuhisa Tashiro; Kazuo Takayama; Kazuo Ohashi; Kenji Kawabata; Fuminori Sakurai; Masashi Tachibana; Takao Hayakawa; Miho K. Furue; Hiroyuki Mizuguchi

Hepatocyte-like cells differentiated from human embryonic stem cells (hESCs) or human induced pluripotent stem cells (hiPSCs) are known to be a useful cell source for drug screening. We recently developed an efficient hepatic differentiation method from hESCs and hiPSCs by sequential transduction of FOXA2 and HNF1α. It is known that the combination of three-dimensional (3D) culture and co-culture, namely 3D co-culture, can maintain the functions of primary hepatocytes. However, hepatic maturation of hESC- or hiPSC-derived hepatocyte-like cells (hEHs or hiPHs, respectively) by 3D co-culture systems has not been examined. Therefore, we utilized a cell sheet engineering technology to promote hepatic maturation. The gene expression levels of hepatocyte-related markers (such as cytochrome P450 enzymes and conjugating enzymes) and the amount of albumin secretion in the hEHs or hiPHs, which were 3D co-cultured with the Swiss 3T3 cell sheet, were significantly up-regulated in comparison with those in the hEHs or hiPHs cultured in a monolayer. Furthermore, we found that type I collagen synthesized in Swiss 3T3 cells plays an important role in hepatic maturation. The hEHs or hiPHs that were 3D co-cultured with the Swiss 3T3 cell sheet would be powerful tools for medical applications, such as drug screening.


Stem cell reports | 2013

Long-Term Self-Renewal of Human ES/iPS-Derived Hepatoblast-like Cells on Human Laminin 111-Coated Dishes

Kazuo Takayama; Yasuhito Nagamoto; Natsumi Mimura; Katsuhisa Tashiro; Fuminori Sakurai; Masashi Tachibana; Takao Hayakawa; Kenji Kawabata; Hiroyuki Mizuguchi

Summary The establishment of self-renewing hepatoblast-like cells (HBCs) from human pluripotent stem cells (PSCs) would realize a stable supply of hepatocyte-like cells for medical applications. However, the functional characterization of human PSC-derived HBCs was not enough. To purify and expand human PSC-derived HBCs, human PSC-derived HBCs were cultured on dishes coated with various types of human recombinant laminins (LN). Human PSC-derived HBCs attached to human laminin-111 (LN111)-coated dish via integrin alpha 6 and beta 1 and were purified and expanded by culturing on the LN111-coated dish, but not by culturing on dishes coated with other laminin isoforms. By culturing on the LN111-coated dish, human PSC-derived HBCs were maintained for more than 3 months and had the ability to differentiate into both hepatocyte-like cells and cholangiocyte-like cells. These expandable human PSC-derived HBCs would be manageable tools for drug screening, experimental platforms to elucidate mechanisms of hepatoblasts, and cell sources for hepatic regenerative therapy.


PLOS ONE | 2011

Efficient and Directive Generation of Two Distinct Endoderm Lineages from Human ESCs and iPSCs by Differentiation Stage-Specific SOX17 Transduction

Kazuo Takayama; Mitsuru Inamura; Kenji Kawabata; Katsuhisa Tashiro; Kazufumi Katayama; Fuminori Sakurai; Takao Hayakawa; Miho K. Furue; Hiroyuki Mizuguchi

The establishment of methods for directive differentiation from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) is important for regenerative medicine. Although Sry-related HMG box 17 (SOX17) overexpression in ESCs leads to differentiation of either extraembryonic or definitive endoderm cells, respectively, the mechanism of these distinct results remains unknown. Therefore, we utilized a transient adenovirus vector-mediated overexpression system to mimic the SOX17 expression pattern of embryogenesis. The number of alpha-fetoprotein-positive extraembryonic endoderm (ExEn) cells was increased by transient SOX17 transduction in human ESC- and iPSC-derived primitive endoderm cells. In contrast, the number of hematopoietically expressed homeobox (HEX)-positive definitive endoderm (DE) cells, which correspond to the anterior DE in vivo, was increased by transient adenovirus vector-mediated SOX17 expression in human ESC- and iPSC-derived mesendoderm cells. Moreover, hepatocyte-like cells were efficiently generated by sequential transduction of SOX17 and HEX. Our findings show that a stage-specific transduction of SOX17 in the primitive endoderm or mesendoderm promotes directive ExEn or DE differentiation by SOX17 transduction, respectively.


Biochemical and Biophysical Research Communications | 2011

Use of human hepatocyte-like cells derived from induced pluripotent stem cells as a model for hepatocytes in hepatitis C virus infection.

Takeshi Yoshida; Kazuo Takayama; Masuo Kondoh; Fuminori Sakurai; Hideki Tani; Naoya Sakamoto; Yoshiharu Matsuura; Hiroyuki Mizuguchi; Kiyohito Yagi

Host tropism of hepatitis C virus (HCV) is limited to human and chimpanzee. HCV infection has never been fully understood because there are few conventional models for HCV infection. Human induced pluripotent stem cell-derived hepatocyte-like (iPS-Hep) cells have been expected to use for drug discovery to predict therapeutic activities and side effects of compounds during the drug discovery process. However, the suitability of iPS-Hep cells as an experimental model for HCV research is not known. Here, we investigated the entry and genomic replication of HCV in iPS-Hep cells by using HCV pseudotype virus (HCVpv) and HCV subgenomic replicons, respectively. We showed that iPS-Hep cells, but not iPS cells, were susceptible to infection with HCVpv. The iPS-Hep cells expressed HCV receptors, including CD81, scavenger receptor class B type I (SR-BI), claudin-1, and occludin; in contrast, the iPS cells showed no expression of SR-BI or claudin-1. HCV RNA genome replication occurred in the iPS-Hep cells. Anti-CD81 antibody, an inhibitor of HCV entry, and interferon, an inhibitor of HCV genomic replication, dose-dependently attenuated HCVpv entry and HCV subgenomic replication in iPS-Hep cells, respectively. These findings suggest that iPS-Hep cells are an appropriate model for HCV infection.


Journal of Hepatology | 2016

Transplantation of a human iPSC-derived hepatocyte sheet increases survival in mice with acute liver failure

Yasuhito Nagamoto; Kazuo Takayama; Kazuo Ohashi; Ryota Okamoto; Fuminori Sakurai; Masashi Tachibana; Kenji Kawabata; Hiroyuki Mizuguchi

BACKGROUND & AIMS Hepatocyte transplantation is one of the most attractive approaches for the treatment of patients with liver failure. Because human induced pluripotent stem cell-derived hepatocyte-like cells (iPS-HLCs) can be produced on a large scale and generated from a patient with liver failure, they are expected to be used for hepatocyte transplantation. However, when using conventional transplantation methods, i.e., intrasplenic or portal venous infusion, it is difficult to control the engraftment efficiency and avoid unexpected engraftment in other organs because the transplanted cells are delivered into blood circulation before their liver engraftment. METHODS In this study, to resolve these issues, we attempted to employ a cell sheet engineering technology for experimental hepatocyte transplantation. The human iPS-HLC sheets were attached onto the liver surfaces of mice with liver injury. RESULTS This method reduced unexpected engraftment in organs other than the liver compared to that by intrasplenic transplantation. Human albumin levels in the mice with human iPS-HLC sheets were significantly higher than those in the intrasplenically-transplanted mice, suggesting the high potential for cell engraftment of the sheet transplantation procedure. In addition, human iPS-HLC sheet transplantation successfully ameliorated lethal acute liver injury induced by the infusion of carbon tetrachloride (CCl4). Moreover, we found that the hepatocyte growth factor secreted from the human iPS-HLC sheet played an important role in rescuing of mice from acute hepatic failure. CONCLUSIONS Human iPS-HLC sheet transplantation would be a useful and reliable therapeutic approach for a patient with severe liver diseases.

Collaboration


Dive into the Kazuo Takayama's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge