Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazuo Tatebayashi is active.

Publication


Featured researches published by Kazuo Tatebayashi.


The EMBO Journal | 2007

Transmembrane mucins Hkr1 and Msb2 are putative osmosensors in the SHO1 branch of yeast HOG pathway

Kazuo Tatebayashi; Keiichiro Tanaka; Hui-Yu Yang; Katsuyoshi Yamamoto; Yusaku Matsushita; Taichiro Tomida; Midori Imai; Haruo Saito

To cope with life‐threatening high osmolarity, yeast activates the high‐osmolarity glycerol (HOG) signaling pathway, whose core element is the Hog1 MAP kinase cascade. Activated Hog1 regulates the cell cycle, protein translation, and gene expression. Upstream of the HOG pathway are functionally redundant SLN1 and SHO1 signaling branches. However, neither the osmosensor nor the signal generator of the SHO1 branch has been clearly defined. Here, we show that the mucin‐like transmembrane proteins Hkr1 and Msb2 are the potential osmosensors for the SHO1 branch. Hyperactive forms of Hkr1 and Msb2 can activate the HOG pathway only in the presence of Sho1, whereas a hyperactive Sho1 mutant activates the HOG pathway in the absence of both Hkr1 and Msb2, indicating that Hkr1 and Msb2 are the most upstream elements known so far in the SHO1 branch. Hkr1 and Msb2 individually form a complex with Sho1, and, upon high external osmolarity stress, appear to induce Sho1 to generate an intracellular signal. Furthermore, Msb2, but not Hkr1, can also generate an intracellular signal in a Sho1‐independent manner.


The EMBO Journal | 2002

Smad‐dependent GADD45β expression mediates delayed activation of p38 MAP kinase by TGF‐β

Mutsuhiro Takekawa; Kazuo Tatebayashi; Fumio Itoh; Masaaki Adachi; Kohzoh Imai; Haruo Saito

Transforming growth factor‐β (TGF‐β), when bound to its specific receptor, activates the transcription factor Smad by phosphorylation. TGF‐β also activates the p38 MAPK pathway, but there seem to be disparate mechanisms for the early p38 activation and delayed p38 activation. In this report, we demonstrate that Smad‐dependent expression of GADD45β is responsible for the delayed activation of p38 by TGF‐β. The GADD45β protein binds and activates MTK1 (= MEKK4), which is a member of the MAPKKK family kinases and an upstream activator of the p38 MAPK cascade. Both TGF‐β‐induced GADD45β expression and the delayed p38 activation require functional Smad proteins. Antisense inhibition of GADD45β expression suppresses the TGF‐β‐induced delayed p38 activation, whereas overexpression of GADD45β activates the p38 MAPK via MTK1. Expression of the angiogenesis inhibitor thrombospondin‐1 (TSP‐1) is induced by TGF‐β via Smad‐dependent p38 activation. Thus TGF‐β‐induced p38 activation, mediated by GADD45β expression, may play an important role in the biological effects of TGF‐β.


The EMBO Journal | 2006

Adaptor functions of Cdc42, Ste50, and Sho1 in the yeast osmoregulatory HOG MAPK pathway

Kazuo Tatebayashi; Katsuyoshi Yamamoto; Keiichiro Tanaka; Taichiro Tomida; Takashi Maruoka; Eri Kasukawa; Haruo Saito

The yeast high osmolarity glycerol (HOG) signaling pathway can be activated by either of the two upstream pathways, termed the SHO1 and SLN1 branches. When stimulated by high osmolarity, the SHO1 branch activates an MAP kinase module composed of the Ste11 MAPKKK, the Pbs2 MAPKK, and the Hog1 MAPK. To investigate how osmostress activates this MAPK module, we isolated both gain‐of‐function and loss‐of‐function alleles in four key genes involved in the SHO1 branch, namely SHO1, CDC42, STE50, and STE11. These mutants were characterized using an HOG‐dependent reporter gene, 8xCRE‐lacZ. We found that Cdc42, in addition to binding and activating the PAK‐like kinases Ste20 and Cla4, binds to the Ste11–Ste50 complex to bring activated Ste20/Cla4 to their substrate Ste11. Activated Ste11 and its HOG pathway‐specific substrate, Pbs2, are brought together by Sho1; the Ste11–Ste50 complex binds to the cytoplasmic domain of Sho1, to which Pbs2 also binds. Thus, Cdc42, Ste50, and Sho1 act as adaptor proteins that control the flow of the osmostress signal from Ste20/Cla4 to Ste11, then to Pbs2.


The EMBO Journal | 2003

A docking site determining specificity of Pbs2 MAPKK for Ssk2/Ssk22 MAPKKKs in the yeast HOG pathway

Kazuo Tatebayashi; Mutsuhiro Takekawa; Haruo Saito

Mitogen‐activated protein kinase (MAPK) cascades are conserved signaling modules composed of three sequentially activated kinases (MAPKKK, MAPKK and MAPK). Because individual cells contain multiple MAPK cascades, mechanisms are required to ensure the fidelity of signal transmission. In yeast, external high osmolarity activates the HOG (high osmolarity glycerol) MAPK pathway, which consists of two upstream branches (SHO1 and SLN1) and common downstream elements including the Pbs2 MAPKK and the Hog1 MAPK. The Ssk2/Ssk22 MAPKKKs in the SLN1 branch, when activated, exclusively phosphorylate the Pbs2 MAPKK. We found that this was due to an Ssk2/Ssk22‐specific docking site in the Pbs2 N‐terminal region. The Pbs2 docking site constitutively bound the Ssk2/Ssk22 kinase domain. Docking site mutations drastically reduced the Pbs2–Ssk2/Ssk22 interaction and hampered Hog1 activation by the SLN1 branch. Fusion of the Pbs2 docking site to a different MAPKK, Ste7, allowed phosphorylation of Ste7 by Ssk2/Ssk22. Thus, the docking site contributes to both the efficiency and specificity of signaling. During these analyses, we also found a nuclear export signal and a possible nuclear localization signal in Pbs2.


Genes to Cells | 1999

Bloom's syndrome gene suppresses premature ageing caused by Sgs1 deficiency in yeast.

Seok-Jin Heo; Kazuo Tatebayashi; Itaru Ohsugi; Akira Shimamoto; Yasuhiro Furuichi; Hideo Ikeda

Blooms syndrome (BS) is an autosomal recessive disorder causing short stature, immunodeficiency, and an increased risk of cancer. Increased rates of sister chromatid exchange and chromosomal aberration have been observed in cells having defects in the BLM gene. Among five kinds of human RecQ helicases cloned, the mutations in WRN and RecQL4 have been known as the causes of premature ageing. Little is, however, known about the function of BLM helicase in ageing.


The EMBO Journal | 2009

Glycosylation defects activate filamentous growth Kss1 MAPK and inhibit osmoregulatory Hog1 MAPK

Hui-Yu Yang; Kazuo Tatebayashi; Katsuyoshi Yamamoto; Haruo Saito

The yeast filamentous growth (FG) MAP kinase (MAPK) pathway is activated under poor nutritional conditions. We found that the FG‐specific Kss1 MAPK is activated by a combination of an O‐glycosylation defect caused by disruption of the gene encoding the protein O‐mannosyltransferase Pmt4, and an N‐glycosylation defect induced by tunicamycin. The O‐glycosylated membrane proteins Msb2 and Opy2 are both essential for activating the FG MAPK pathway, but only defective glycosylation of Msb2 activates the FG MAPK pathway. Although the osmoregulatory HOG (high osmolarity glycerol) MAPK pathway and the FG MAPK pathway share almost the entire upstream signalling machinery, osmostress activates only the HOG‐specific Hog1 MAPK. Conversely, we now show that glycosylation defects activate only Kss1, while activated Kss1 and the Ptp2 tyrosine phosphatase inhibit Hog1. In the absence of Kss1 or Ptp2, however, glycosylation defects activate Hog1. When Hog1 is activated by glycosylation defects in ptp2 mutant, Kss1 activation is suppressed by Hog1. Thus, the reciprocal inhibitory loop between Kss1 and Hog1 allows only one or the other of these MAPKs to be stably activated under various stress conditions.


Molecular Cell | 2010

Dynamic control of yeast MAP kinase network by induced association and dissociation between the Ste50 scaffold and the Opy2 membrane anchor.

Katsuyoshi Yamamoto; Kazuo Tatebayashi; Keiichiro Tanaka; Haruo Saito

Membrane localization of the Ste11 MAPKKK is essential for activation of both the filamentous growth/invasive growth (FG/IG) MAP kinase (MAPK) pathway and the SHO1 branch of the osmoregulatory HOG MAPK pathway, and is mediated by binding of the Ste50 scaffold protein to the Opy2 membrane anchor. We found that Opy2 has two major (CR-A and CR-B), and one minor (CR-D), binding sites for Ste50. CR-A binds Ste50 constitutively and can transmit signals to both the Hog1 and Fus3/Kss1 MAPKs. CR-B, in contrast, binds Ste50 only when Opy2 is phosphorylated by Yck1/Yck2 under glucose-rich conditions and transmits the signal preferentially to the Hog1 MAPK. Ste50 phosphorylation by activated Hog1/Fus3/Kss1 MAPKs downregulates the HOG MAPK pathway by dissociating Ste50 from Opy2. Furthermore, Ste50 phosphorylation, together with MAPK-specific protein phosphatases, reduces the basal activity of the HOG and the mating MAPK pathways. Thus, dynamic regulation of Ste50-Opy2 interaction fine-tunes the MAPK signaling network.


Molecular and Cellular Biology | 2008

Phosphorylated Ssk1 Prevents Unphosphorylated Ssk1 from Activating the Ssk2 Mitogen-Activated Protein Kinase Kinase Kinase in the Yeast High-Osmolarity Glycerol Osmoregulatory Pathway

Tetsuro Horie; Kazuo Tatebayashi; Rika Yamada; Haruo Saito

ABSTRACT In Saccharomyces cerevisiae, external high osmolarity activates the Hog1 mitogen-activated protein kinase (MAPK), which controls various aspects of osmoadaptation. Ssk1 is a homolog of bacterial two-component response regulators and activates the Ssk2 MAPK kinase kinase upstream of Hog1. It has been proposed that unphosphorylated Ssk1 (Ssk1-OH) is the active form and that Ssk1 phosphorylated (Ssk1∼P) at Asp554 by the Sln1-Ypd1-Ssk1 multistep phosphorelay mechanism is the inactive form. In this study, we show that constitutive activation of Ssk2 occurs when Ssk1 phosphorylation is blocked by either an Ssk1 mutation at the phosphorylation site or an Ssk1 mutation that inhibits its interaction with Ypd1, the donor of phosphate to Ssk1. Thus, Ssk1-OH is indeed necessary for Ssk2 activation. However, overexpression of wild-type Ssk1 or of an Ssk1 mutant that cannot bind Ssk2 prevents constitutively active Ssk1 mutants from activating Ssk2. Therefore, Ssk1 has a dual function as both an activator of Ssk2 and an inhibitor of Ssk1 itself. We also found that Ssk1 exists mostly as a dimer within cells. From mutant phenotypes, we deduce that only the Ssk1-OH/Ssk1-OH dimer can activate Ssk2 efficiently. Hence, because Ssk1∼P binds to and inhibits Ssk1-OH, moderate fluctuation of the level of Ssk1-OH does not lead to nonphysiological and detrimental activation of Hog1.


Molecular and Cellular Biology | 2008

Two Adjacent Docking Sites in the Yeast Hog1 Mitogen-Activated Protein (MAP) Kinase Differentially Interact with the Pbs2 MAP Kinase Kinase and the Ptp2 Protein Tyrosine Phosphatase

Yulia Murakami; Kazuo Tatebayashi; Haruo Saito

ABSTRACT Functional interactions between a mitogen-activated protein kinase (MAPK) and its regulators require specific docking interactions. Here, we investigated the mechanism by which the yeast osmoregulatory Hog1 MAPK specifically interacts with its activator, the MAPK kinase Pbs2, and its major inactivator, the protein phosphatase Ptp2. We found, in the N-terminal noncatalytic region of Pbs2, a specific Hog1-binding domain, termed HBD-1. We also defined two adjacent Pbs2-binding sites in Hog1, namely, the common docking (CD) domain and Pbs2-binding domain 2 (PBD-2). The PBD-2 docking site appears to be sterically blocked in the intact Hog1 molecule, but its affinity to Pbs2 is apparent in shorter fragments of Hog1. Both the CD and the PBD-2 docking sites are required for the optimal activation of Hog1 by Pbs2, and in the absence of both sites, Hog1 cannot be activated by Pbs2. These data suggest that the initial interaction of Pbs2 with the CD site might induce a conformational change in Hog1 so that the PBD-2 site becomes accessible. The CD and PBD-2 docking sites are also involved in the specific interaction between Hog1 and Ptp2 and govern the dynamic dephosphorylation of activated Hog1. Thus, the CD and the PBD-2 docking sites play critical roles in both the activation and inactivation of Hog1.


Science Signaling | 2014

Yeast Osmosensors Hkr1 and Msb2 Activate the Hog1 MAPK Cascade by Different Mechanisms

Keiichiro Tanaka; Kazuo Tatebayashi; Akiko Nishimura; Katsuyoshi Yamamoto; Hui-Yu Yang; Haruo Saito

Apparent redundancy in two yeast osmosensors instead confers specificity in coupling internal and external signals. Not So Redundant After All Many pathways appear to have multiple proteins that serve the same function; however, that may not always be the case. By performing detailed biochemical and genetic analysis of the two possible pathways that activate the kinase Hog1 in yeast in response to high osmotic conditions, Tanaka et al. revealed a unique mechanism by which only one of these “redundant” pathways integrates osmotic stress signals with regulation of the actin cytoskeleton. Thus, detailed investigation of the mechanism of a signaling network can uncover previously unappreciated specificity in pathways considered to be redundant. To cope with environmental high osmolarity, the budding yeast Saccharomyces cerevisiae activates the mitogen-activated protein kinase (MAPK) Hog1, which controls an array of osmoadaptive responses. Two independent, but functionally redundant, osmosensing systems involving the transmembrane sensor histidine kinase Sln1 or the tetraspanning membrane protein Sho1 stimulate the Hog1 MAPK cascade. Furthermore, the Sho1 signaling branch itself also involves the two functionally redundant osmosensors Hkr1 and Msb2. However, any single osmosensor (Sln1, Hkr1, or Msb2) is sufficient for osmoadaptation. We found that the signaling mechanism by which Hkr1 or Msb2 stimulated the Hog1 cascade was specific to each osmosensor. Specifically, activation of Hog1 by Msb2 required the scaffold protein Bem1 and the actin cytoskeleton. Bem1 bound to the cytoplasmic domain of Msb2 and thus recruited the kinases Ste20 and Cla4 to the membrane, where either of them can activate the kinase Ste11. The cytoplasmic domain of Hkr1 also contributed to the activation of Ste11 by Ste20, but through a mechanism that involved neither Bem1 nor the actin cytoskeleton. Furthermore, we found a PXXP motif in Ste20 that specifically bound to the Sho1 SH3 (Src homology 3) domain. This interaction between Ste20 and Sho1 contributed to the activation of Hog1 by Hkr1, but not by Msb2. These differences between Hkr1 and Msb2 may enable differential regulation of these two proteins and provide a mechanism through Msb2 to connect regulation of the cytoskeleton with the response to osmotic stress.

Collaboration


Dive into the Kazuo Tatebayashi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun-ichi Kato

Tokyo Metropolitan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge