Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazutaka Shimbo is active.

Publication


Featured researches published by Kazutaka Shimbo.


Rapid Communications in Mass Spectrometry | 2009

Precolumn derivatization reagents for high-speed analysis of amines and amino acids in biological fluid using liquid chromatography/electrospray ionization tandem mass spectrometry.

Kazutaka Shimbo; Takashi Oonuki; Akihisa Yahashi; Kazuo Hirayama; Hiroshi Miyano

A rapid analytical method for amines and amino acids was developed, involving derivatization with the novel reagent 3-aminopyridyl-N-hydroxysuccinimidyl carbamate (APDS), followed by reversed-phase high-performance liquid chromatography and electrospray ionization tandem mass spectrometry (HPLC/ESI-MS/MS). More than 100 different analytes with amino groups, including amino acids in biological fluids such as mammalian plasma, could be measured within 10 min. The analytes were easily derivatized with APDS under the mild conditions. Selective reaction monitoring of ESI-MS/MS in positive mode was carried out to include the transitions of all of the protonated molecular ions of analytes derivatized with APDS to the common fragment at m/z 121, which was derived from the amino pyridyl moiety of the reagent. We evaluated the retention time precision, the quantification limits, the linearity, the intra- and inter-day precisions and the accuracy of 22 typical amino acids found in biological fluids, by analyzing a standard amino acid mixture and rat plasma. The intra-day relative standard deviations (RSDs) of the retention times of the 22 amino acids and their internal standards were within 0.9% and the inter-day RSDs were less than 1.1%, except for asparagines, with an RSD of 1.9%. The intra-day and inter-day RSDs of amino acid analyses in rat plasma were within 8.0% and 4.5%, respectively. The method, which facilitates the amino acid analysis of more than 100 samples in a day, represents an alternative to traditional amino acid analysis techniques, such as chromatography using postcolumn derivatization by ninhydrin.


Gastroenterology | 2009

Dietary Histidine Ameliorates Murine Colitis by Inhibition of Proinflammatory Cytokine Production From Macrophages

Ayatoshi Andou; Tadakazu Hisamatsu; Susumu Okamoto; Hiroshi Chinen; Nobuhiko Kamada; Taku Kobayashi; Masaki Hashimoto; Tomohisa Okutsu; Kazutaka Shimbo; Tomoko Takeda; Hideki Matsumoto; Atsushi Sato; Hiroshi Ohtsu; Manabu Suzuki; Toshifumi Hibi

BACKGROUND & AIMS Elemental diet (ED) is effective for human Crohns disease (CD). Although some of this effectiveness may be due to its low antigenic load and low fat content, the mechanisms remain unclear. We sought to assess the role of histidine, one of the constituent amino acids of ED, in controlling colitis. METHODS The interleukin (IL)-10-deficient (IL-10(-/-)) cell transfer model of colitis was used. SCID mice with colitis induced by transfer of IL-10(-/-) cells were maintained on experimented diets containing either single amino acids or a mixture. The severity of colitis was assessed by wet colon weight. Colonic tumor necrosis factor (TNF)-alpha messenger RNA (mRNA) expression was detected by quantitative reverse-transcription polymerase chain reaction. Mouse peritoneal macrophages were stimulated by lipopolysaccharides (LPS), with or without amino acids. The concentration of cytokines in the supernatant was determined by enzyme-linked immunosorbent assay. Inhibitor of nuclear factor (NF)-kappaB-alpha and nuclear p65 were confirmed by immunoblotting. RESULTS In the IL-10(-/-) transfer model, dietary histidine, but not alanine, reduced histologic damage and colon weight and TNF-alpha mRNA expression. Histidine inhibited LPS-induced TNF-alpha and IL-6 production by mouse macrophages in a concentration-dependent manner, whereas alanine or histidine-related metabolites had no such effect. Histidine inhibited LPS-induced NF-kappaB in macrophages. CONCLUSIONS These results showed that histidine could be a novel therapeutic agent for CD by inhibition of NF-kappaB activation, following down-regulation of proinflammatory cytokine production by macrophages. Thus, our studies provided new insights into the roles of amino acid metabolism in the pathophysiology of CD and for therapeutic strategies.


Biomedical Chromatography | 2009

Automated precolumn derivatization system for analyzing physiological amino acids by liquid chromatography/mass spectrometry

Kazutaka Shimbo; Shintaro Kubo; Yushi Harada; Takashi Oonuki; Takefumi Yokokura; Hiroo Yoshida; Michiko Amao; Mina Nakamura; Naoko Kageyama; Junko Yamazaki; Shinichi Ozawa; Kazuo Hirayama; Toshihiko Ando; Junkichi Miura; Hiroshi Miyano

An automated method for high-throughput amino acid analysis, using precolumn derivatization high-performance liquid chromatography/electrospray mass spectrometry (HPLC/ESI-MS), was developed and evaluated. The precolumn derivatization step was performed in the reaction port of a home-built auto-sampler system. Amino acids were derivatized with 3-aminopyridyl-N-hydroxysuccinimidyl carbamate, and a 3 microm Wakosil-II 3C8-100HG column (100 x 2.1 mm i.d.) was used for separation. To achieve a 13 min cycle for each sample, the derivatization and separation steps were performed in parallel. The results of the method evaluation, including the linearity, and the intra- and inter-precision, were sufficient to measure physiological amino acids in human plasma samples. The relative standard deviations of typical amino acids in actual human plasma samples were below 10%.


Journal of Biotechnology | 2010

Dynamic modeling of Escherichia coli metabolic and regulatory systems for amino-acid production.

Yoshihiro Usuda; Yosuke Nishio; Shintaro Iwatani; Stephen Van Dien; Akira Imaizumi; Kazutaka Shimbo; Naoko Kageyama; Daigo Iwahata; Hiroshi Miyano; Kazuhiko Matsui

Our aim is to construct a practical dynamic-simulation system that can model the metabolic and regulatory processes involved in the production of primary metabolites, such as amino acids. We have simulated the production of glutamate by transient batch-cultivation using a model of Escherichia coli central metabolism. Kinetic data were used to produce both the metabolic parts of the model, including the phosphotransferase system, glycolysis, the pentose-phosphate pathway, the tricarboxylic acid cycle, the glyoxylate shunt, and the anaplerotic pathways, and the regulatory parts of the model, including regulation by transcription factors, cyclic AMP receptor protein (CRP), making large colonies protein (Mlc), catabolite repressor/activator (Cra), pyruvate dehydrogenase complex repressor (PdhR), and acetate operon repressor (IclR). RNA polymerase and ribosome concentrations were expressed as a function of the specific growth rate, mu, corresponding to the changes in the growth rate during batch cultivation. Parameter fitting was performed using both extracellular concentration measurements and in vivo enzyme activities determined by (13)C flux analysis. By manual adjustment of the parameters, we simulated the batch fermentation of glucose or fructose by a wild-type strain (MG1655) and a glutamate-producing strain (MG1655 Delta sucA). The differences caused by the carbon source, and by wild-type and glutamate-producing strains, were clearly shown by the simulation. A sensitivity analysis revealed the factors that could be altered to improve the production process. Furthermore, an in silico deletion experiments could suggested the existence of uncharacterized regulation. We concluded that our simulation model could function as a new tool for the rational improvement and design of metabolic and regulatory networks.


American Journal of Ophthalmology | 2011

Amino Acid Profiles in Human Tear Fluids Analyzed by High-Performance Liquid Chromatography and Electrospray Ionization Tandem Mass Spectrometry

Mina Nakatsukasa; Chie Sotozono; Kazutaka Shimbo; Nobukazu Ono; Hiroshi Miyano; Akira Okano; Junji Hamuro; Shigeru Kinoshita

PURPOSE To identify the 23 amino acid profiles in human tear fluids, and to evaluate whether the ocular disease conditions reflect the amino acid profiles. DESIGN Laboratory investigation. METHODS We evaluated the concentrations and relative composition of 23 amino acids in tear fluids obtained from 31 healthy volunteers using reversed-phase high-performance liquid chromatography and electrospray ionization tandem mass spectrometry, and compared them with those in plasma and aqueous humor. We also evaluated the tear-fluid amino acid profiles from 33 affected subjects. RESULTS The amino acid profiles of the basal tear and reflex tear were found to be similar, and 4 distinct groups of healthy volunteers (male, female, young, and elderly) showed similar profiles. Absolute concentrations of taurine (Tau) and L-glutamine were significantly dominant in these tear fluids. The relative compositions of Tau, L-glutamic acid, L-arginine (Arg), and citrulline in the tear fluid were significantly higher than those in the plasma and aqueous humor. Analysis of the hierarchical clustering of the amino acid profiles clearly distinguished severe ocular surface diseases from non-ocular surface diseases. The relative compositions of Tau, L-methionine, and Arg decreased in severe ocular surface disease subjects compared with non-ocular surface disease subjects. CONCLUSIONS Tear-fluid amino acid profiles differ from those in plasma and aqueous humor. Steady-state tear-fluid amino acid profiles might reflect ocular-surface homeostasis and the observed changes of amino acids might have a close relation with the disease conditions on the ocular surface.


Cancer Research | 2014

Cancer Usurps Skeletal Muscle as an Energy Repository

Yi Luo; Junya Yoneda; Hitoshi Ohmori; Takamitsu Sasaki; Kazutaka Shimbo; Sachise Eto; Yumiko Kato; Hiroshi Miyano; Tsuyoshi Kobayashi; Tomonori Sasahira; Yoshitomo Chihara; Hiroki Kuniyasu

Cancer cells produce energy through aerobic glycolysis, but contributions of host tissues to cancer energy metabolism are unclear. In this study, we aimed to elucidate the cancer-host energy production relationship, in particular, between cancer energy production and host muscle. During the development and progression of colorectal cancer, expression of the secreted autophagy-inducing stress protein HMGB1 increased in the muscle of tumor-bearing animals. This effect was associated with decreased expression of pyruvate kinase PKM1 and pyruvate kinase activity in muscle via the HMGB1 receptor for advanced glycation endproducts (RAGE). However, muscle mitochondrial energy production was maintained. In contrast, HMGB1 addition to colorectal cancer cells increased lactate fermentation. In the muscle, HMGB1 addition induced autophagy by decreasing levels of active mTOR and increasing autophagy-associated proteins, plasma glutamate, and (13)C-glutamine incorporation into acetyl-CoA. In a mouse model of colon carcinogenesis, a temporal increase in HMGB1 occurred in serum and colonic mucosa with an increase in autophagy associated with altered plasma free amino acid levels, increased glutamine, and decreased PKM1 levels. These differences were abolished by administration of an HMGB1 neutralizing antibody. Similar results were obtained in a mouse xenograft model of human colorectal cancer. Taken together, our findings suggest that HMGB1 released during tumorigenesis recruits muscle to supply glutamine to cancer cells as an energy source.


Molecular Genetics and Metabolism | 2011

Time-dependent changes in the plasma amino acid concentration in diabetes mellitus.

Taiga Mochida; Takayuki Tanaka; Yasuko Shiraki; Hiroko Tajiri; Shirou Matsumoto; Kazutaka Shimbo; Toshihiko Ando; Kimitoshi Nakamura; Masahiro Okamoto; Fumio Endo

We investigated longitudinal change in the amino acid (AA) profile in type 1 diabetes mellitus (DM) using AKITA mice, which develop DM as a result of insulin deficiency. The plasma concentrations of valine, leucine, isoleucine, as well as the total branched chain amino acids, alanine, citrulline and proline, were significantly higher in the diabetic mice. We show that the degree and timing of the changes were different among the plasma amino acid concentrations (pAAs) during the development of type 1 DM.


Journal of Chromatography B | 2015

Validation of an analytical method for human plasma free amino acids by high-performance liquid chromatography ionization mass spectrometry using automated precolumn derivatization.

Hiroo Yoshida; Kazuhiro Kondo; Hiroyuki Yamamoto; Naoko Kageyama; Shinichi Ozawa; Kazutaka Shimbo; Takahiko Muramatsu; Akira Imaizumi; Toshimi Mizukoshi; Junichi Masuda; Daisuke Nakayama; Yoshihiro Hayakawa; Kyoko Watanabe; Kazuo Mukaibatake; Hiroshi Miyano

The analysis of human plasma free amino acids is important for diagnosing the health of individuals, because their concentrations are known to vary with various diseases. The development of valid, reliable, and high-throughput analytical methods for amino acids analysis is an essential requirement in clinical applications. In the present study, we have developed an automated precolumn derivatization amino acid analytical method based on high-performance liquid chromatography/electrospray ionization mass spectrometry (so-called UF-Amino Station). This method enabled the separation of at least 38 types of physiological amino acids within 8min, and the interval time between injections was 12min. We also validated this method for 21 major types of free amino acids in human plasma samples. The results of the specificity, linearity, accuracy, repeatability, intermediate precision, reproducibility, limits of detections, lower limits of quantification, carry over, and sample solution stability were sufficient to allow for the measurement of amino acids in human plasma samples. Our developed method should be suitable for use in clinical fields.


Clinica Chimica Acta | 2016

The effects of pre-analysis sample handling on human plasma amino acid concentrations.

Shunji Takehana; Hiroo Yoshida; Shinichi Ozawa; Junko Yamazaki; Kazutaka Shimbo; Akira Nakayama; Toshimi Mizukoshi; Hiroshi Miyano

BACKGROUND The accurate and reliable quantification of amino acid concentrations in human plasma is important for the investigation of a number of diseases. However, few systematic studies investigating the changes in amino acid concentrations related to blood collection and storage conditions have been completed. METHODS Blood samples were collected with EDTA-Na2 from 3 healthy volunteers and subjected to a number of different treatments; hemolysis, temperature after blood collection, time from blood collection to cooling, the influence of platelets, long term storage conditions, and repeated freeze-thaw cycles. Changes in the concentrations of 22 amino acids were determined using an Amino Acid Analyzer. RESULTS Of the conditions influencing sample stability between blood collection and amino acid analysis, hemolysis, temperature after blood collection, and long-term storage at -20°C affected the concentrations of 11 amino acids. Time from blood collection to cooling, platelet contamination and repeated freeze-thaw cycles altered the levels of 4 amino acids. CONCLUSIONS We observed changes in amino acid concentrations relating to blood collection and storage conditions. If attention is paid to 4 key factors (hemolysis, temperature immediately following blood collection, time from collection to cooling, and long-term storage temperature) 19 amino acids can be reliably quantified.


Analytical Biochemistry | 2015

Simultaneous quantification of intracellular and secreted active and inactive glucagon-like peptide-1 from cultured cells.

Michiko Amao; Yoshiro Kitahara; Ayaka Tokunaga; Kazutaka Shimbo; Yuzuru Eto; Naoyuki Yamada

Glucagon-like peptide-1 (GLP-1) is an incretin peptide that regulates islet hormone secretion. During recent years, incretin-based therapies have been widely used for patients with type 2 diabetes. GLP-1 peptides undergo N- and C-terminal processing for gain or loss of functions. We developed a method to quantify picomolar quantities of intact GLP-1 peptides using liquid chromatography-tandem mass spectrometry (LC-MS/MS). By employing this label-free selected reaction monitoring (SRM) method, we were able to analyze secreted GLP-1(1-37), GLP-1(7-37), and GLP-1(7-36 amid from human enteroendocrine NCI-H716 cells after stimulation with nateglinide, glucose, and sucralose. The absolute total concentrations of secreted GLP-1 peptides at baseline and after stimulation with nateglinide, glucose, and sucralose were 167.3, 498.9, 238.3, and 143.1 pM, respectively. Meanwhile, the ratios of GLP-1(1-37), GLP-1(7-37), and GLP-1(7-36 amide) to total GLP-1 peptides were similar (6 ± 3, 26 ± 3, and 78 ± 5%, respectively). The SRM assay can analyze the concentrations of individual GLP-1 peptides and, therefore, is a tool to investigate the physiological roles of GLP-1 peptides. Furthermore, the molecular species secreted from NCI-H716 cells were unknown. Therefore, we performed a secretopeptidome analysis of supernatants collected from cultured NCI-H716 cells. Together with GLP-1 peptides, we detected neuroendocrine convertase 1, which regulates peptide hormones released from intestinal endocrine L-cells.

Collaboration


Dive into the Kazutaka Shimbo's collaboration.

Researchain Logo
Decentralizing Knowledge