Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazutaka Tateyama is active.

Publication


Featured researches published by Kazutaka Tateyama.


Annals of Glaciology | 2006

ARISE (Antarctic Remote Ice Sensing Experiment) in the East 2003: Validation of Satellite-derived Sea-ice Data Product

Ra Massom; Ap Worby; Vi Lytle; Thorsten Markus; Ian Allison; Theodore A. Scambos; Hiroyuki Enomoto; Kazutaka Tateyama; Terence Haran; Josefino C. Comiso; Andreas Pfaffling; Takeshi Tamura; Atsuhiro Muto; Pannir Kanagaratnam; Barry Giles; Nw Young; Glenn Hyland; Erica L. Key

Abstract Preliminary results are presented from the first validation of geophysical data products (ice concentration, Snow thickness on Sea ice (hs) and ice temperature (TI) from the NASA EOS Aqua AMSR-E Sensor, in East Antarctica (in September–October 2003). The challenge of collecting Sufficient measurements with which to validate the coarse-resolution AMSR-E data products adequately was addressed by means of a hierarchical approach, using detailed in situ measurements, digital aerial photography and other Satellite data. Initial results from a circumnavigation of the experimental Site indicate that, at least under cold conditions with a dry Snow cover, there is a reasonably close agreement between Satellite- and aerial-photo-derived ice concentrations, i.e. 97.2±3.6% for NT2 and 96.5±2.5% for BBA algorithms vs 94.3% for the aerial photos. In general, the AMSR-E concentration represents a Slight overestimate of the actual concentration, with the largest discrepancies occurring in regions containing a relatively high proportion of thin ice. The AMSR-E concentrations from the NT2 and BBA algorithms are Similar on average, although differences of up to 5% occur in places, again related to thin-ice distribution. The AMSR-E ice temperature (TI) product agrees with coincident Surface measurements to approximately 0.5˚C in the limited dataset analyzed. Regarding Snow thickness, the AMSR hs retrieval is a Significant underestimate compared to in situ measurements weighted by the percentage of thin ice (and open water) present. For the case Study analyzed, the underestimate was 46% for the overall average, but 23% compared to Smooth-ice measurements. The Spatial distribution of the AMSR-E hs product follows an expected and consistent Spatial pattern, Suggesting that the observed difference may be an offset (at least under freezing conditions). Areas of discrepancy are identified, and the need for future work using the more extensive dataset is highlighted.


Annals of Glaciology | 2006

Estimation of thin sea-ice thickness from NOAA AVHRR data in a polynya off the Wilkes Land coast, East Antarctica

Takeshi Tamura; Kay I. Ohshima; Hiroyuki Enomoto; Kazutaka Tateyama; Atsuhiro Muto; Shuki Ushio; Ra Massom

Abstract Antarctic coastal polynyas are major areas of intense ocean–atmosphere heat and moisture flux, and associated high Sea-ice production and dense-water formation. Their accurate detection, including an estimate of thin ice thickness, is therefore very important. In this paper, we apply a technique originally developed in the Arctic to an estimation of Sea-ice thickness using Us National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) data and meteorological data in the Vincennes Bay polynya off Wilkes Land, East Antarctica. The method is based upon the heat-flux calculation using Sea-ice Surface temperature estimates from the Satellite thermal-infrared data combined with global objective analysis (European Centre for Medium-Range Weather Forecasts (ECMWF)) data. The validity of this method is assessed by comparing results with independent ice-surface temperature and ice-thickness data obtained during an Australian-led research cruise to the region in 2003. In thin-ice (polynya) regions, ice thicknesses estimated by the heat-flux calculation using AVHRR and ECMWF data Show reasonable agreement with those estimated by (a) applying the heat-flux calculation to in Situ radiation thermometer and meteorological data and (b) in Situ observations. The Standard deviation of the difference between the AVHRR-derived and in Situ data is ∽0.02 m. Comparison of the AVHRR ice-thickness retrievals with coincident Satellite passive-microwave polarization ratio data confirms the potential of the latter as a means of deriving maps of thin Sea-ice thickness on the wider Scale, uninterrupted by darkness and cloud cover.


Annals of Glaciology | 2006

Ship-borne electromagnetic induction sounding of sea-ice thickness in the southern Sea of Okhotsk

Shotaro Uto; Takenobu Toyota; Haruhito Shimoda; Kazutaka Tateyama; Kunio Shirasawa

Abstract Recent observations have revealed that dynamical thickening is dominant in the growth process of Sea ice in the Southern Sea of Okhotsk. That indicates the importance of understanding the nature of thick deformed ice in this area. The objective of the present paper is to establish a Ship-based method for observing the thickness of deformed ice with reasonable accuracy. Since February 2003, one of the authors has engaged in the core Sampling using a Small basket from the icebreaker Soya. Based on these results, we developed a new model which expressed the internal Structure of pack ice in the Southern Sea of Okhotsk, as a one-dimensional multilayered Structure. Since 2004, the electromagnetic (EM) inductive Sounding of Sea-ice thickness has been conducted on board Soya. By combining the model and theoretical calculations, a new algorithm was developed for transforming the output of the EM inductive instrument to ice + Snow thickness (total thickness). Comparison with total thickness by drillhole observations Showed fair agreement. The probability density functions of total thickness in 2004 and 2005 Showed Some difference, which reflected the difference of fractions of thick deformed ice.


Annals of Glaciology | 2006

Standardization of electromagnetic-induction measurements of sea-ice thickness in polar and subpolar seas

Kazutaka Tateyama; Kunio Shirasawa; Shotaro Uto; Toshiyuki Kawamura; Takenobu Toyota; Hiroyuki Enomoto

Abstract Electromagnetic–induction (EM) instruments can be used to estimate Sea-ice thickness because of the large contrast in the conductivities of Sea ice and Sea water, and are currently used in investigations of Sea-ice thickness. In this Study we analyze Several Snow, ice and Sea-water Samples and attempt to derive an appropriate formula to transform the apparent conductivity obtained from EM measurements to the total thickness of Snow and ice for all regions and Seasons. This was done to Simplify the EM tuning procedure. Surface EM measurement transects with the instrument at varying heights above the ice were made in the Chukchi Sea, off East Antarctica, in the Sea of Okhotsk and in Saroma-ko (lagoon). A Standardized transformation formula based on a one-dimensional multi-layer model was developed that also considers the effects of water-filled gaps between deformed ice, a Saline Snow Slush layer, and the increase in the footprint Size caused by increasing the instrument height. The overall average error in ice thickness determined with the Standardized transform was <7%, and the regional average errors were 2.2% for the Arctic, 7.0% for the Antarctic, 6.5% for the Sea of Okhotsk and 4.4% for Saroma-ko.


Annals of Glaciology | 2001

Observation of sea-ice thickness fluctuation in the seasonal ice-covered area during 1992−99 winters

Kazutaka Tateyama; Hiroyuki Enomoto

Abstract Sea-ice fluctuations in the Sea of Okhotsk and the Bering Sea during the winters of 1992−99 were investigated by using the Special Sensor Microwave/ Imager dataset and a new ice-property retrieval algorithm This algorithm can distinguish between ice types such as fast ice floes, young ice and new ice, in an area covered by concentrations of >80% ice, and also has improved display resolution because it uses one of the 85 GHz channels. The ice thicknesses derived from the ice-thickness parameter of the new algorithm were compared with ship-based ice-thickness measurements, and were assumed to be 1−10, 11−34, 35−85 and 86−120 cm for new ice, young ice, floes (first-year ice) and fast ice, respectively. The results showed that ice volume can be small even if the ice area is large, due to thinness of the ice (e.g. in 1999 in the Sea of Okhotsk). A significant out-of-phase response, i.e. ice volume is larger in the Sea of Okhotsk when ice volume is smaller in the Bering Sea, was observed. The period of this see-saw showed two different time-scales, which were short (1 week) and long (2−4 weeks).


Annals of Glaciology | 2013

Sea-ice coverage variability on the Northern Sea Routes, 1980–2011

Hiroki Shibata; Koh Izumiyama; Kazutaka Tateyama; Hiroyuki Enomoto; Shuhei Takahashi

Abstract We analyze sea-ice conditions along seven segments of the Northern Sea Route (NSR) over four time periods. We researched sea ice by segment, using data from the satellite microwave sensors SMMR, SSM/I and AMSR-E. The four analysis periods (periods I–IV: 1980–88, 1989–2001, 2002–06 and 2007–11, respectively) were determined based on changes in the extent of minimum sea ice throughout the Arctic Ocean. Sea ice showed a decreasing tendency from period I to period IV. For example, sea-ice area in period IV decreased compared to previous periods in the eastern East Siberian Sea and around Severnaya Zemlya, areas that had very high sea-ice concentrations in period I. Sea-ice area in the eastern East Siberian Sea decreased sharply during period III, whereas the Severnaya Zemlya area maintained a high ice concentration. In period IV, sea-ice coverage around Severnaya Zemlya was low, although it remained at 25% in the area east of Severnaya Zemlya, which is a key area for navigation. The proportion of multi-year (MY) ice drastically decreased after winter 2002, and only a small amount of MY ice existed in the winters of 2003–06. MY ice disappeared from the eastern East Siberian Sea after 2007. On the other hand, around Severnaya Zemlya the proportion of MY ice showed cyclic ups and downs between 1997 and 2008. Thus, the persistence of various types of sea ice varies according to region. The persistence of various types of sea ice around Severnaya Zemlya also varied each year.


Journal of Geophysical Research | 2016

Estimation of melt pond fraction over high‐concentration Arctic sea ice using AMSR‐E passive microwave data

Yasuhiro Tanaka; Kazutaka Tateyama; Takao Kameda; Jennifer K. Hutchings

Melt pond fraction (MPF) on sea ice is an important factor for ice-albedo feedback throughout the Arctic Ocean. We propose an algorithm to estimate MPF using satellite passive microwave data in this study. The brightness temperature (TB) data obtained from the Advanced Microwave Scanning Radiometer-Earth observing system (AMSR-E) were compared to the ship-based MPF in the Beaufort Sea and Canadian Arctic Archipelago. The difference between the TB at horizontal and vertical polarizations of 6.9 and 89.0 GHz (MP06H–89V), respectively, depends on the MPF. The correlation between MP06H–89V and ship-based MPF was higher than that between ship-based MPF and two individual channels (6.9 and 89.0 GHz of horizontal and vertical polarizations, respectively). The MPF determined with the highest resolution channel, 89.0 GHz (5 km × 5 km), provides spatial information with more detail than the 6.9 GHz channel. The algorithm estimates the relative fraction of ice covered by water (1) over areas where sea ice concentration is higher than 95%, (2) during late summer, and (3) in areas with low atmospheric humidity. The MPF estimated from AMSR-E data (AMSR-E MPF) in early summer was underestimated at lower latitudes and overestimated at higher latitudes, compared to the MPF obtained from the Moderate Resolution Image Spectrometer (MODIS MPF). The differences between AMSR-E MPF and MODIS MPF were less than 5% in most the regions and the periods. Our results suggest that the proposal algorithm serves as a basis for building time series of MPF in regions of consolidated ice pack.


Annals of Glaciology | 2011

Interannual changes in sea-ice conditions on the Arctic Sea Route obtained by satellite microwave data

Hiroki Shibata; Kazutaka Tateyama; Hiroyuki Enomoto; Shuuhei Takahashi

Abstarct With decreases in Arctic sea-ice extent in recent years, the Northern Sea Route (NSR) and Northwest Passage (NWP), which we collectively term the Arctic Sea Route (ASR), have become open for navigation more frequently. The ASR connects the Pacific and Atlantic Oceans, with the NSR following the Siberian coast, and the NWP following the north coast of North America. This study evaluated long-term ice concentrations along both routes using microwave data from the SMMR and SSM/I sensors, and analyzed details using data from the AMSR-E passive microwave sensor. The data were used to determine the number of navigable days according to various sea-ice concentrations. Analysis of SMMR and SSM/I data showed a remarkably large number of navigable days on the NSR since 1995. For the NWP, the low resolution of the SMMR and SSM/I data for the Canadian Arctic Archipelago made analysis difficult, but long-term change in the sea-ice distribution on the ASR was indicated. Analysis of the AMSR-E microwave sensor data revealed navigable days along the NSR in 2002 and from 2005 to 2009 (except 2007). For navigation purposes, the sea-ice decrease in specific regions is important, as well as the decrease across the Arctic Ocean as a whole. For the NWP, numerous navigable days were identified in the period 2006–08.


Annals of Glaciology | 2015

Helicopter-borne observations with portable microwave radiometer in the Southern Ocean and the Sea of Okhotsk

Takeshi Tamura; Kay I. Ohshima; Jl Lieser; Takenobu Toyota; Kazutaka Tateyama; Daiki Nomura; Kazuki Nakata; Alexander D. Fraser; Pw Jansen; Kym B. Newbery; Ra Massom; Shuki Ushio

Abstract Accurately measuring and monitoring the thickness distribution of thin ice is crucial for accurate estimation of ocean–atmosphere heat fluxes and rates of ice production and salt flux in ice-affected oceans. Here we present results from helicopter-borne brightness temperature (TB) measurements in the Southern Ocean in October 2012 and in the Sea of Okhotsk in February 2009 carried out with a portable passive microwave (PMW) radiometer operating at a frequency of 36 GHz. The goal of these measurements is to aid evaluation of a satellite thin-ice thickness algorithm which uses data from the spaceborne Advanced Microwave Scanning Radiometer–Earth Observing System AMSR-E) or the Advanced Microwave Scanning Radiometer-II (AMSR-II). AMSR-E and AMSR-II TB agree with the spatially collocated mean TB from the helicopter-borne measurements within the radiometers’ precision. In the Sea of Okhotsk in February 2009, the AMSR-E 36GHz TB values are closer to the mean than the modal TB values measured by the helicopter-borne radiometer. In an Antarctic coastal polynya in October 2012, the polarization ratio of 36GHz vertical and horizontal TB is estimated to be 0.137 on average. Our measurements of the TB at 36 GHz over an iceberg tongue suggest a way to discriminate it from sea ice by its unique PMW signature.


Annals of Glaciology | 2018

Estimation of sea-ice thickness and volume in the Sea of Okhotsk based on ICESat data

Sohey Nihashi; Nathan T. Kurtz; Thorsten Markus; Kay I. Ohshima; Kazutaka Tateyama; Takenobu Toyota

ABSTRACT Sea-ice thickness in the Sea of Okhotsk is estimated for 2004–2008 from ICESat derived freeboard under the assumption of hydrostatic balance. Total ice thickness including snow depth (htot) averaged over 2004–2008 is 95 cm. The interannual variability of htot is large; from 77.5 cm (2008) to 110.4 cm (2005). The mode of htot varies from 50–60 cm (2007 and 2008) to 70–80 cm (2005). Ice thickness derived from ICESat data is validated from a comparison with that observed by Electromagnetic Induction Instrument (EM) aboard the icebreaker Soya near Hokkaido, Japan. Annual maps of htot reveal that the spatial distribution of htot is similar every year. Ice volume of 6.3 × 1011 m3 is estimated from the ICESat derived htot and AMSR-E derived ice concentration. A comparison with ice area demonstrates that the ice volume cannot always be represented by the area solely, despite the fact that the area has been used as a proxy of the volume in the Sea of Okhotsk. The ice volume roughly corresponds to that of annual ice production in the major coastal polynyas estimated based on heat budget calculations. This also supports the validity of the estimation of sea-ice thickness and volume using ICESat data.

Collaboration


Dive into the Kazutaka Tateyama's collaboration.

Top Co-Authors

Avatar

Hiroyuki Enomoto

National Institute of Polar Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kunio Shirasawa

Soka University of America

View shared research outputs
Top Co-Authors

Avatar

Shuki Ushio

National Institute of Polar Research

View shared research outputs
Top Co-Authors

Avatar

Ra Massom

Australian Antarctic Division

View shared research outputs
Top Co-Authors

Avatar

Takeshi Tamura

Cooperative Research Centre

View shared research outputs
Top Co-Authors

Avatar

Hiroki Shibata

Kitami Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keisuke Nakayama

Kitami Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge