Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazuto Yamazaki is active.

Publication


Featured researches published by Kazuto Yamazaki.


Journal of Biological Chemistry | 1999

Molecular and Functional Characterization of a Novel Mouse Transient Receptor Potential Protein Homologue TRP7 Ca2+-PERMEABLE CATION CHANNEL THAT IS CONSTITUTIVELY ACTIVATED AND ENHANCED BY STIMULATION OF G PROTEIN-COUPLED RECEPTOR

Takaharu Okada; Ryuji Inoue; Kazuto Yamazaki; Akito Maeda; Tomohiro Kurosaki; Tohru Yamakuni; Isao Tanaka; Shunichi Shimizu; Kazuhiro Ikenaka; Keiji Imoto; Yasuo Mori

Characterization of mammalian homologues ofDrosophila transient receptor potential protein (TRP) is an important clue to understand molecular mechanisms underlying Ca2+ influx activated in response to stimulation of Gq protein-coupled receptors in vertebrate cells. Here we have isolated cDNA encoding a novel seventh mammalian TRP homologue, TRP7, from mouse brain. TRP7 showed abundant RNA expression in the heart, lung, and eye and moderate expression in the brain, spleen, and testis. TRP7 recombinantly expressed in human embryonic kidney cells exhibited distinctive functional features, compared with other TRP homologues. Basal influx activity accompanied by reduction in Ca2+ release from internal stores was characteristic of TRP7-expressing cells but was by far less significant in cells expressing TRP3, which is structurally the closest to TRP7 in the TRP family. TRP7 induced Ca2+ influx in response to ATP receptor stimulation at ATP concentrations lower than those necessary for activation of TRP3 and for Ca2+ release from the intracellular store, which suggests that the TRP7 channel is activated independently of Ca2+ release. In fact, TRP7 expression did not affect capacitative Ca2+ entry induced by thapsigargin, whereas TRP7 greatly potentiated Mn2+ influx induced by diacylglycerols without involvement of protein kinase C. Nystatin-perforated and conventional whole-cell patch clamp recordings from TRP7-expressing cells demonstrated the constitutively activated and ATP-enhanced inward cation currents, both of which were initially blocked and then subsequently facilitated by extracellular Ca2+ at a physiological concentration. Impairment of TRP7 currents by internal perfusion of the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid revealed an essential role of intracellular Ca2+ in activation of TRP7, and their potent activation by the diacylglycerol analogue suggests that the TRP7 channel is a new member of diacylglycerol-activated cation channels. Relative permeabilities indicate that TRP7 is slightly selective to divalent cations. Thus, our findings reveal an interesting correspondence of TRP7 to the background and receptor stimulation-induced cation currents in various native systems.


Biochemical and Biophysical Research Communications | 2002

Enhanced secretion of glucagon-like peptide 1 by biguanide compounds

Nobuyuki Yasuda; Takashi Inoue; Tadashi Nagakura; Kazuto Yamazaki; Kazunobu Kira; Takao Saeki; Isao Tanaka

Metformin was reported to increase plasma active glucagon-like peptide-1 (GLP-1) in humans. There are two possible mechanisms for this effect: (1) metformin inhibits dipeptidyl peptidase IV (DPPIV), an enzyme degrading GLP-1, and (2) metformin enhances GLP-1 secretion. To elucidate the mechanism(s), we examined (1) IC(50) of metformin for DPPIV inhibition, (2) plasma active GLP-1 changes after oral biguanide (metformin, phenformin, and buformin) treatment in fasting DPPIV-deficient F344/DuCrj rats, and (3) plasma intact GLP-1 excursions after oral administration of metformin and/or valine-pyrrolidide, a DPPIV inhibitor, in fasting DPPIV-positive F344/Jcl rats. Our in vitro assay showed that metformin at up to 30mM has no inhibitory activity towards porcine or rat DPPIV. Metformin treatment (30, 100, and 300mg/kg) increased plasma active GLP-1 levels dose-dependently in DPPIV-deficient F344/DuCrj rats (approximately 1.6-fold at 3 and 5h after administration of 300mg/kg). This treatment had no effect on blood glucose levels. Similarly, phenformin and buformin (30 and 100mg/kg) elevated plasma intact GLP-1 levels in F344/DuCrj rats. In DPPIV-positive F344/Jcl rats, coadministration of metformin (300mg/kg) and valine-pyrrolidide (30mg/kg) resulted in elevation of plasma active GLP-1, but neither metformin nor valine-pyrrolidide treatment alone had any effect. These findings suggest that metformin has no direct inhibitory effect on DPPIV activity and that metformin and the other biguanides enhance GLP-1 secretion, without altering glucose metabolism. Combination therapy with metformin and a DPPIV inhibitor should be useful for the treatment of diabetes.


BMC Neuroscience | 2005

Ataxia and peripheral nerve hypomyelination in ADAM22-deficient mice

Koji Sagane; Kazuhiro Hayakawa; Junko Kai; Tomoko Hirohashi; Eiki Takahashi; Norimasa Miyamoto; Mitsuhiro Ino; Tohru Oki; Kazuto Yamazaki; Takeshi Nagasu

BackgroundADAM22 is a member of the ADAM gene family, but the fact that it is expressed only in the nervous systems makes it unique. ADAM22s sequence similarity to other ADAMs suggests it to be an integrin binder and thus to have a role in cell-cell or cell-matrix interactions. To elucidate the physiological functions of ADAM22, we employed gene targeting to generate ADAM22 knockout mice.ResultsADAM22-deficient mice were produced in a good accordance with the Mendelian ratio and appeared normal at birth. After one week, severe ataxia was observed, and all homozygotes died before weaning, probably due to convulsions. No major histological abnormalities were detected in the cerebral cortex or cerebellum of the homozygous mutants; however, marked hypomyelination of the peripheral nerves was observed.ConclusionThe results of our study demonstrate that ADAM22 is closely involved in the correct functioning of the nervous system. Further analysis of ADAM22 will provide clues to understanding the mechanisms of human diseases such as epileptic seizures and peripheral neuropathy.


Neuroscience Letters | 2002

Evidence for in vivo production of Humanin peptide, a neuroprotective factor against Alzheimer's disease-related insults

Hirohisa Tajima; Takako Niikura; Yuichi Hashimoto; Yuko Ito; Yoshiko Kita; Kenzo Terashita; Kazuto Yamazaki; Atsuo Koto; Sadakazu Aiso; Ikuo Nishimoto

An unbiased functional screening with brain cDNA library from an Alzheimers disease (AD) brain identified a novel 24-residue peptide Humanin (HN), which suppresses AD-related neurotoxicity. As the 1567-base cDNA containing the open reading frame (ORF) of HN is 99% identical to mitochondrial 16S ribosomal RNA as well as registered human mRNA, it was elusive whether HN is produced in vivo. Here, we raised anti-HN antibody and found that long cDNAs containing the ORF of HN (HN-ORF) produced the HN peptide in mammalian cells, dependent on the presence of full-length HN-ORF. Immunoblot analysis detected a 3-kDa protein with HN immunoreactivity in the testis and the colon in 3-week-old mice and in the testis in 12-week-old mice. HN immunoreactivity was also detected in an AD brain, but little in normal brains. This study suggests that HN peptide could be produced in vivo, and would provide a novel insight into the pathophysiology of AD.


Brain Research | 1995

Axonal degeneration promotes abnormal accumulation of amyloid β-protein in ascending gracile tract of gracile axonal dystrophy (GAD) mouse

Nobutsune Ichihara; Jiang Wu; De Hua Chui; Kazuto Yamazaki; Tsuneo Wakabayashi; Tateki Kikuchi

The GAD mouse is a spontaneous neurological mutant with axonal dystrophy in the gracile tract of the medulla oblongata and spinal cord. The immunoreactivity of amyloid precursor protein (APP-IR) and amyloid beta-protein (A beta P-IR) was examined in the gracile tract and the dorsal root ganglia of normal and GAD mice. The mice were studied at 4, 9, 18, and 32 weeks of age. These periods correspond clinically to the initial, progressive, critical, and terminal stages of the disease, respectively. The APP-IR in both axons and glial cells was already accentuated to a higher level as early as 4 weeks of age in the gracile nucleus of GAD mouse. Similarly there was increase in APP-IR of GAD mouse in the dorsal root ganglia. Almost all of the primary neurons in the dorsal root ganglia at the lumbar cord level of GAD mouse revealed stronger APP-IR than those of normal mouse throughout all stages. The cells showing immunoreactivity for amyloid beta-protein became positive in axons and glial cells in the gracile nucleus by approximately the 9th week, and followed by an increase of A beta P-IR in order of the cervical, thoracic and lumbar spinal cords. These results suggest that the initial feature in GAD mouse is an accumulation of amyloid precursor protein induced by axonal dystrophy which then leads to a deposition of amyloid beta-protein within the cytoplasm of both axons and glial cells in the gracile tract.


Gene | 1999

Cloning and chromosomal mapping of mouse ADAM11, ADAM22 and ADAM23.

Koji Sagane; Kazuto Yamazaki; Yoshiharu Mizui; Isao Tanaka

A cellular disintegrin, also called MDC and ADAM is a recently discovered gene family that encodes protein with disintegrin-like and metalloprotease-like domains. We have reported the identification of human cDNAs encoding novel ADAM family proteins that we named MDC2 and MDC3 because of their structural similarity to the MDC (Sagane, K. et al., 1998. Biochem. J. 334, 93-98). The Human Gene Nomenclature Committee assigned the gene symbols ADAM11 for the MDC, ADAM22 for the MDC2 and ADAM23 for the MDC3. Here we report the isolation of three novel murine cDNAs encoding the proteins closely related to the human ADAM11, ADAM22 and ADAM23. Their chromosomal locations in the mouse were identified by interspecies backcross mapping. The loci of these murine ADAM genes were in good accordance with the location of each human ortholog, ADAM11, ADAM22 and ADAM23. These findings suggest that three murine cDNAs that we have isolated are the murine ADAM11, ADAM22 and ADAM23 cDNAs. Northern blot analysis shows that all of these three murine ADAMs were highly expressed in the mouse brain. The structures of these ADAM proteins strongly suggest that they could function as integrin receptors. The implications of the cellular disintegrins in neural development are discussed.


Life Sciences | 2002

Improvement of high fat-diet-induced insulin resistance in dipeptidyl peptidase IV-deficient Fischer rats

Nobuyuki Yasuda; Tadashi Nagakura; Kazuto Yamazaki; Takashi Inoue; Isao Tanaka

F344/DuCrj rats are genetically deficient in dipeptidyl peptidase IV (DPPIV). This enzyme degrades glucagon-like peptide-1 (GLP-1), which induces glucose-dependent insulin secretion. Glucose tolerance of F344/DuCrj rats is improved as a result of enhanced insulin release induced by high levels of plasma GLP-1. In this study, we fed F344/DuCrj rats and DPPIV-positive F344/Jcl rats, aged five weeks, on a high-fat (HF) diet to examine the effect of DPPIV deficiency on food intake and insulin resistance. F344/Jcl rats gained significantly more body weight and consumed significantly more food than F344/DuCrj rats from Week 4 on either control or HF diet. Glucose excursion in the oral glucose tolerance test (OGTT) was improved in F344/DuCrj rats fed on the control or HF diet at all times examined, compared with F344/Jcl rats. Homeostasis model assessment (HOMA) insulin resistance values of F344/DuCrj and F344/Jcl rats fed on HF diet were higher than those of animals fed on control diet up to Week 6. However, HOMA insulin resistance values of F344/DuCrj rats fed on HF diet became significantly lower than those of F344/Jcl rats on HF diet during Weeks 8-10. The area under the insulin curve in the OGTT at Week 10 showed that the insulin resistance of HF-diet-fed F344/DuCrj rats was greatly ameliorated. Plasma active GLP-1 concentrations of F344/DuCrj rats in the fed state were significantly higher than those of F344/Jcl rats. These observations suggest that DPPIV deficiency results in improved glucose tolerance and ameliorated insulin resistance owing to enhanced insulin release and inhibition of food intake as a result of high active GLP-1 levels.


BMC Neuroscience | 2006

Deficits in spatial learning and motor coordination in ADAM11-deficient mice

Eiki Takahashi; Koji Sagane; Tohru Oki; Kazuto Yamazaki; Takeshi Nagasu; Junro Kuromitsu

BackgroundADAM11 is a member of the ADAM gene family and is mainly expressed in the nervous system. It is thought to be an adhesion molecule, since it has a disintegrin-like domain related to cell-cell or cell-matrix interactions. To elucidate the physiological functions of ADAM11, we generated ADAM11-deficient mice by means of gene targeting.ResultsADAM11-deficient mice were apparently normal, and survived more than one year with no major histological abnormalities in the brain or spinal cord. Because ADAM11 is highly expressed in the hippocampus and cerebellum, we have examined ADAM11 mutant mice for learning using visual and hidden water maze tasks, and their motor coordination using a rotating rod task. Our results showed that their visual water maze task results are normal, but the hidden water maze and rotating rod task skills are impaired in ADAM11-deficient mice.ConclusionOur results indicate that ADAM11 mutation does not affect cell migration and differentiation during development, but affects learning and motor coordination. Thus, ADAM11 might play an important signalling or structural role as a cell adhesion molecule at the synapse, and may thus participate in synaptic regulation underlying behavioural changes.


Toxicology in Vitro | 2012

A novel method of selecting human embryonic stem cell-derived cardiomyocyte clusters for assessment of potential to influence QT interval.

Kazuto Yamazaki; Taro Hihara; Tomohiko Taniguchi; Naohiro Kohmura; Takashi Yoshinaga; Masashi Ito; Kohei Sawada

Physiologically relevant assessment of delayed repolarization is necessary in drug development. In our preliminary experiments on the evaluation using a multielectrode recording system, we had found that the responsiveness of field potential duration (FPD), as QT-like intervals, to hERG channel blockers differed greatly from non-responders to excessive responders in human embryonic stem cell-derived cardiomyocyte clusters. Thus, we report a novel method of selecting clusters suitable for evaluating compounds for the assessment. Clusters were treated with cisapride, a hERG channel blocker, at 100nM, and selected with criteria of 5-20% of corrected FPD (FPDc) prolongation. Then, selected clusters were treated with reference compounds. FPDc was prolonged by blockade of the hERG channel (E-4031 and dl-sotalol) and KvLQT1 channel (chromanol 293B and HMR1556), and by activation of the sodium channel (veratridine) and calcium channel (Bay K8644). FPDc was shortened by calcium channel blockage (verapamil, nifedipine and diltiazem) and by K(ATP) channel activation (pinacidil). Class Ia antiarrhythmic drugs, quinidine and disopyramide, prolonged FPDc. Selected clusters are appropriate for assessing the effects of compounds on ion channels affecting QT intervals. This is the first report of the establishment of an assessment system of potential to influence QT interval, using pharmacologically selected clusters.


Neuroscience Letters | 1994

Methylcobalamin (methyl-B12) promotes regeneration of motor nerve terminals degenerating in anterior gracile muscle of gracile axonal dystrophy (GAD) mutant mouse

Kazuto Yamazaki; Kenichiro Oda; Chiyoko Endo; Tateki Kikuchi; Tsuneo Wakabayashi

We examined the effects of methylcobalamin (methyl-B12, mecobalamin) on degeneration of motor nerve terminals in the anterior gracile muscle of gracile axonal dystrophy (GAD) mutant mice. GAD mice received orally methyl-B12 (1 mg/kg body wt/day) from the 40th day after birth for 25 days. In the distal endplate zone of the muscle, although most terminals were degenerated in both the untreated and methyl-B12-treated GAD mice, sprouts were more frequently observed in the latter. In the proximal endplate zone, where few degenerated terminals were seen in both groups of the mice, the perimeter of the terminals was increased and the area of the terminals was decreased significantly in the methyl-B12-treated GAD mice. These findings indicate that methyl-B12 promotes regeneration of degenerating nerve terminals in GAD mice.

Collaboration


Dive into the Kazuto Yamazaki's collaboration.

Researchain Logo
Decentralizing Knowledge