Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazuwa Nakao is active.

Publication


Featured researches published by Kazuwa Nakao.


BMC Medical Genetics | 2010

Association of the rs738409 polymorphism in PNPLA3 with liver damage and the development of nonalcoholic fatty liver disease

Kikuko Hotta; Masato Yoneda; Hideyuki Hyogo; Hidenori Ochi; Seiho Mizusawa; Takato Ueno; Kazuaki Chayama; Atsushi Nakajima; Kazuwa Nakao; Akihiro Sekine

BackgroundIn a genome-wide association scan, the single-nucleotide polymorphism (SNP) rs738409 in the patatin-like phospholipase 3 gene (PNPLA3) was strongly associated with increased liver fat content. We investigated whether this SNP is associated with the occurrence and progression of nonalcoholic fatty liver disease (NAFLD) in the Japanese population.MethodsSNP rs738409 was genotyped by the Taqman assay in 253 patients with NAFLD (189 with nonalcoholic steatohepatitis [NASH] and 64 with simple steatosis) and 578 control subjects. All patients with NAFLD underwent liver biopsy. Control subjects had no metabolic disorders. For a case-control study, the χ2-test (additive model) was performed. Odds ratios (ORs) were adjusted for age, gender, and body mass index (BMI) by using multiple logistic regression analysis with genotypes (additive model), age, gender, and BMI as the independent variables. Multiple linear regression analysis was performed to test the independent effect of risk allele on clinical parameters while considering the effects of other variables (age, gender, and BMI), which were assumed to be independent of the effect of the SNP.ResultsThe risk allele (G-allele) frequency of rs738409 was 0.44 in the control subjects and 0.60 in patients with NAFLD; this shows a strong association with NAFLD (additive model, P = 9.4 × 10-10). The OR (95% confidence interval) adjusted for age, gender, and BMI was 1.73 (1.25-2.38). Multiple linear regression analysis indicated that the G-allele of rs738409 was significantly associated with increases in aspartate transaminase (AST) (P = 0.00013), alanine transaminase (ALT) (P = 9.1 × 10-6), and ferritin levels (P = 0.014), and the fibrosis stage (P = 0.011) in the patients with NAFLD, even after adjustment for age, gender, and BMI. The steatosis grade was not associated with rs738409.ConclusionsWe found that in the Japanese population, individuals harboring the G-allele of rs738409 were susceptible to NAFLD, and that rs738409 was associated with plasma levels of ALT, AST, and ferritin, and the histological fibrosis stage. Our study suggests that PNPLA3 may be involved in the progression of fibrosis in NAFLD.


Human Genetics | 2013

Genome-wide scan revealed that polymorphisms in the PNPLA3, SAMM50, and PARVB genes are associated with development and progression of nonalcoholic fatty liver disease in Japan.

Takuya Kitamoto; Aya Kitamoto; Masato Yoneda; Hideyuki Hyogo; Hidenori Ochi; Takahiro Nakamura; Hajime Teranishi; Seiho Mizusawa; Takato Ueno; Kazuaki Chayama; Atsushi Nakajima; Kazuwa Nakao; Akihiro Sekine; Kikuko Hotta

We examined the genetic background of nonalcoholic fatty liver disease (NAFLD) in the Japanese population, by performing a genome-wide association study (GWAS). For GWAS, 392 Japanese NAFLD subjects and 934 control individuals were analyzed. For replication studies, 172 NAFLD and 1,012 control subjects were monitored. After quality control, 261,540 single-nucleotide polymorphisms (SNPs) in autosomal chromosomes were analyzed using a trend test. Association analysis was also performed using multiple logistic regression analysis using genotypes, age, gender and body mass index (BMI) as independent variables. Multiple linear regression analyses were performed to evaluate allelic effect of significant SNPs on biochemical traits and histological parameters adjusted by age, gender, and BMI. Rs738409 in the PNPLA3 gene was most strongly associated with NAFLD after adjustment (Pxa0=xa06.8xa0×xa010−14, ORxa0=xa02.05). Rs2896019, and rs381062 in the PNPLA3 gene, rs738491, rs3761472, and rs2143571 in the SAMM50xa0gene, rs6006473, rs5764455, and rs6006611 in the PARVB gene had also significant P values (<2.0xa0×xa010−10) and high odds ratios (1.84–2.02). These SNPs were found to be in the same linkage disequilibrium block and were associated with decreased serum triglycerides and increased aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in NAFLD patients. These SNPs were associated with steatosis grade and NAFLD activity score (NAS). Rs738409, rs2896019, rs738491, rs6006473, rs5764455, and rs6006611 were associated with fibrosis. Polymorphisms in the SAMM50 and PARVB genes in addition to those in the PNPLA3 gene were observed to be associated with the development and progression of NAFLD.


Journal of Human Genetics | 2009

Association between obesity and polymorphisms in SEC16B, TMEM18, GNPDA2, BDNF, FAIM2 and MC4R in a Japanese population

Kikuko Hotta; Michihiro Nakamura; Takahiro Nakamura; Tomoaki Matsuo; Yoshio Nakata; Seika Kamohara; Kazuaki Kotani; Ryoya Komatsu; Naoto Itoh; Ikuo Mineo; Jun Wada; Hiroaki Masuzaki; Masato Yoneda; Atsushi Nakajima; Tohru Funahashi; Shigeru Miyazaki; Katsuto Tokunaga; Manabu Kawamoto; Takato Ueno; Kazuyuki Hamaguchi; Kiyoji Tanaka; Kentaro Yamada; Toshiaki Hanafusa; Shinichi Oikawa; Hironobu Yoshimatsu; Kazuwa Nakao; Toshiie Sakata; Yuji Matsuzawa; Naoyuki Kamatani; Yusuke Nakamura

There is evidence that the obesity phenotype in the Caucasian populations is associated with variations in several genes, including neuronal growth regulator 1 (NEGR1), SEC16 homolog B (SCE16B), transmembrane protein 18 (TMEM18), ets variant 5 (ETV5), glucosamine-6-phosphate deaminase 2 (GNPDA2), prolactin (PRL), brain-derived neurotrophic factor (BDNF), mitochondrial carrier homolog 2 (MTCH2), Fas apoptotic inhibitory molecule 2 (FAIM2), SH2B adaptor protein 1 (SH2B1), v-maf musculoaponeurotic fibrosarcoma oncogene homolog (MAF), Niemann-Pick disease, type C1 (NPC1), melanocortin 4 receptor (MC4R) and potassium channel tetramerisation domain containing 15 (KCTD15). To investigate the relationship between obesity and these genes in the Japanese population, we genotyped 27 single-nucleotide polymorphisms (SNPs) in 14 genes from obese subjects (n=1129, body mass index (BMI) ⩾30u2009kgu2009m−2) and normal-weight control subjects (n=1736, BMI <25u2009kgu2009m−2). The SNP rs10913469 in SEC16B (P=0.000012) and four SNPs (rs2867125, rs6548238, rs4854344 and rs7561317) in the TMEM18 gene (P=0.00015), all of which were in almost absolute linkage disequilibrium, were significantly associated with obesity in the Japanese population. SNPs in GNPDA2, BDNF, FAIM2 and MC4R genes were marginally associated with obesity (P<0.05). Our data suggest that some SNPs identified by genome-wide association studies in the Caucasians also confer susceptibility to obesity in Japanese subjects.


Journal of Human Genetics | 2011

Association of variations in the FTO , SCG3 and MTMR9 genes with metabolic syndrome in a Japanese population

Kikuko Hotta; Takuya Kitamoto; Aya Kitamoto; Seiho Mizusawa; Tomoaki Matsuo; Yoshio Nakata; Seika Kamohara; Kazuaki Kotani; Ryoya Komatsu; Naoto Itoh; Ikuo Mineo; Jun Wada; Masato Yoneda; Atsushi Nakajima; Tohru Funahashi; Shigeru Miyazaki; Katsuto Tokunaga; Hiroaki Masuzaki; Takato Ueno; Kazuyuki Hamaguchi; Kiyoji Tanaka; Kentaro Yamada; Toshiaki Hanafusa; Shinichi Oikawa; Hironobu Yoshimatsu; Toshiie Sakata; Yuji Matsuzawa; Kazuwa Nakao; Akihiro Sekine

Metabolic syndrome is defined as a cluster of multiple risk factors, including central obesity, dyslipidemia, hypertension and impaired glucose tolerance, that increase cardiovascular disease morbidity and mortality. Genetic factors are important in the development of metabolic syndrome, as are environmental factors. However, the genetic background of metabolic syndrome is not yet fully clarified. There is evidence that obesity and obesity-related phenotypes are associated with variations in several genes, including NEGR1, SEC16B, TMEM18, ETV5, GNPDA2, BDNF, MTCH2, SH2B1, FTO, MAF, MC4R, KCTD15, SCG3, MTMR9, TFAP2B, MSRA, LYPLAL1, GCKR and FADS1. To investigate the relationship between metabolic syndrome and variations in these genes in the Japanese population, we genotyped 33 single-nucleotide polymorphisms (SNPs) in 19 genes from 1096 patients with metabolic syndrome and 581 control individuals who had no risk factors for metabolic syndrome. Four SNPs in the FTO gene were significantly related to metabolic syndrome: rs9939609 (P=0.00013), rs8050136 (P=0.00011), rs1558902 (P=6.6 × 10−5) and rs1421085 (P=7.4 × 10−5). rs3764220 in the SCG3 gene (P=0.0010) and rs2293855 in the MTMR9 gene (P=0.0015) were also significantly associated with metabolic syndrome. SNPs in the FTO, SCG3 and MTMR9 genes had no SNP × SNP epistatic effects on metabolic syndrome. Our data suggest that genetic variations in the FTO, SCG3 and MTMR9 genes independently influence the risk of metabolic syndrome.


Journal of Human Genetics | 2010

Polymorphisms in NRXN3, TFAP2B, MSRA, LYPLAL1, FTO and MC4R and their effect on visceral fat area in the Japanese population.

Kikuko Hotta; Michihiro Nakamura; Takahiro Nakamura; Tomoaki Matsuo; Yoshio Nakata; Seika Kamohara; Kazuaki Kotani; Ryoya Komatsu; Naoto Itoh; Ikuo Mineo; Jun Wada; Masato Yoneda; Atsushi Nakajima; Tohru Funahashi; Shigeru Miyazaki; Katsuto Tokunaga; Manabu Kawamoto; Hiroaki Masuzaki; Takato Ueno; Kazuyuki Hamaguchi; Kiyoji Tanaka; Kentaro Yamada; Toshiaki Hanafusa; Shinichi Oikawa; Hironobu Yoshimatsu; Kazuwa Nakao; Toshiie Sakata; Yuji Matsuzawa; Yusuke Nakamura; Naoyuki Kamatani

The predominant risk factor of metabolic syndrome is intra-abdominal fat accumulation, which is determined by waist circumference and waist–hip ratio measurements and visceral fat area (VFA) that is measured by computed tomography (CT). There is evidence that waist circumference and waist–hip ratio in the Caucasian population are associated with variations in several genes, including neurexin 3 (NRXN3), transcription factor AP-2β (TFAP2B), methionine sulfoxide reductase A (MSRA), lysophospholipase-like-1 (LYPLAL1), fat mass and obesity associated (FTO) and melanocortin 4 receptor (MC4R) genes. To investigate the relationship between VFA and subcutaneous fat area (SFA) and these genes in the recruited Japanese population, we genotyped 8 single-nucleotide polymorphisms (SNPs) in these 6 genes from 1228 subjects. Multiple regression analysis revealed that gender, age, and rs1558902 and rs1421085 genotypes (additive model) in FTO were significantly associated with body mass index (BMI; P=0.0039 and 0.0039, respectively), SFA (P=0.0027 and 0.0023, respectively) and VFA (P=0.045 and 0.040, respectively). However, SNPs in other genes, namely, NRXN3, TFAP2B, MSRA, LYPLAL1 and MC4R were not significantly associated with BMI, SFA or VFA. Our data suggest that some SNPs, which were identified in genome-wide studies in the Caucasians, also confer susceptibility to fat distribution in the Japanese subjects.


Journal of Human Genetics | 2012

Genetic variations in the CYP17A1 and NT5C2 genes are associated with a reduction in visceral and subcutaneous fat areas in Japanese women

Kikuko Hotta; Aya Kitamoto; Takuya Kitamoto; Seiho Mizusawa; Hajime Teranishi; Tomoaki Matsuo; Yoshio Nakata; Hideyuki Hyogo; Hidenori Ochi; Takahiro Nakamura; Seika Kamohara; Kazuaki Kotani; Ryoya Komatsu; Naoto Itoh; Ikuo Mineo; Jun Wada; Masato Yoneda; Atsushi Nakajima; Tohru Funahashi; Shigeru Miyazaki; Katsuto Tokunaga; Hiroaki Masuzaki; Takato Ueno; Kazuaki Chayama; Kazuyuki Hamaguchi; Kentaro Yamada; Toshiaki Hanafusa; Shinichi Oikawa; Hironobu Yoshimatsu; Toshiie Sakata

Visceral fat accumulation has an important role in increasing the morbidity and mortality rates, by increasing the risk of developing several metabolic disorders, such as type 2 diabetes, dyslipidemia and hypertension. New genetic loci that are associated with increased systolic and diastolic blood pressures have been identified by genome-wide association studies in Caucasian populations. This study investigates whether single nucleotide polymorphisms (SNPs) that confer susceptibility to high blood pressure are also associated with visceral fat obesity. We genotyped 1279 Japanese subjects (556 men and 723 women) who underwent computed tomography for measuring the visceral fat area (VFA) and subcutaneous fat area (SFA) at the following SNPs: FGF5 rs16998073, CACNB2 rs11014166, C10orf107 rs1530440, CYP17A1 rs1004467, NT5C2 rs11191548, PLEKHA7 rs381815, ATP2B1 rs2681472 and rs2681492, ARID3B rs6495112, CSK rs1378942, PLCD3 rs12946454, and ZNF652 rs16948048. In an additive model, risk alleles of the CYP17A1 rs1004467 and NT5C2 rs11191548 were found to be significantly associated with reduced SFA (P=0.00011 and 0.0016, respectively). When the analysis was performed separately in men and women, significant associations of rs1004467 (additive model) and rs11191548 (recessive model) with reduced VFA (P=0.0018 and 0.0022, respectively) and SFA (P=0.00039 and 0.00059, respectively) were observed in women, but not in men. Our results suggest that polymorphisms in the CYP17A1 and NT5C2 genes influence a reduction in both visceral and subcutaneous fat mass in Japanese women.


Journal of Human Genetics | 2012

Association between type 2 diabetes genetic susceptibility loci and visceral and subcutaneous fat area as determined by computed tomography

Kikuko Hotta; Aya Kitamoto; Takuya Kitamoto; Seiho Mizusawa; Hajime Teranishi; Rina So; Tomoaki Matsuo; Yoshio Nakata; Hideyuki Hyogo; Hidenori Ochi; Takahiro Nakamura; Seika Kamohara; Kazuaki Kotani; Ryoya Komatsu; Naoto Itoh; Ikuo Mineo; Jun Wada; Masato Yoneda; Atsushi Nakajima; Tohru Funahashi; Shigeru Miyazaki; Katsuto Tokunaga; Hiroaki Masuzaki; Takato Ueno; Kazuaki Chayama; Kazuyuki Hamaguchi; Kentaro Yamada; Toshiaki Hanafusa; Shinichi Oikawa; Hironobu Yoshimatsu

Visceral fat accumulation has an important role in the development of several metabolic disorders, such as type 2 diabetes, dyslipidemia and hypertension. New genetic loci that contribute to the development of type 2 diabetes have been identified by genome-wide association studies. To examine the association of type 2 diabetes susceptibility loci and visceral fat accumulation, we genotyped 1279 Japanese subjects (556 men and 723 women), who underwent computed tomography for measurements of visceral fat area (VFA) and subcutaneous fat area (SFA) for the following single-nucleotide polymorphisms (SNPs): NOTCH2 rs10923931, THADA rs7578597, PPARG rs1801282, ADAMTS9 rs4607103, IGF2BP2 rs1470579, VEGFA rs9472138, JAZF1 rs864745, CDKN2A/CDKN2B rs564398 and rs10811661, HHEX rs1111875 and rs5015480, TCF7L2 rs7901695, KCNQ1 rs2237892, KCNJ11 rs5215 and rs5219, EXT2 rs1113132, rs11037909, and rs3740878, MTNR1B rs10830963, DCD rs1153188, TSPAN8/LGR5 rs7961581, and FTO rs8050136 and rs9939609. None of the above SNPs were significantly associated with VFA. The FTO rs8050136 and rs9939609 risk alleles exhibited significant associations with body mass index (BMI; P=0.00088 and P=0.0010, respectively) and SFA (P=0.00013 and P=0.00017, respectively). No other SNPs were significantly associated with BMI or SFA. Our results suggest that two SNPs in the FTO gene are associated with subcutaneous fat accumulation. The contributions of other SNPs are inconclusive because of a limitation of the sample power.


Journal of Human Genetics | 2011

Computed tomography analysis of the association between the SH2B1 rs7498665 single-nucleotide polymorphism and visceral fat area

Kikuko Hotta; Takuya Kitamoto; Aya Kitamoto; Seiho Mizusawa; Tomoaki Matsuo; Yoshio Nakata; Hideyuki Hyogo; Hidenori Ochi; Seika Kamohara; Kazuaki Kotani; Ryoya Komatsu; Naoto Itoh; Ikuo Mineo; Jun Wada; Masato Yoneda; Atsushi Nakajima; Tohru Funahashi; Shigeru Miyazaki; Katsuto Tokunaga; Hiroaki Masuzaki; Takato Ueno; Kazuaki Chayama; Kazuyuki Hamaguchi; Kentaro Yamada; Toshiaki Hanafusa; Shinichi Oikawa; Hironobu Yoshimatsu; Toshiie Sakata; Kiyoji Tanaka; Yuji Matsuzawa

Visceral fat accumulation has an important role in increasing morbidity and mortality rate by increasing the risk of developing several metabolic disorders, such as type 2 diabetes, dyslipidemia and hypertension. New genetic loci that contribute to the development of obesity have been identified by genome-wide association studies in Caucasian populations. We genotyped 1279 Japanese subjects (556 men and 723 women), who underwent computed tomography (CT) for measuring visceral fat area (VFA) and subcutaneous fat area (SFA), for the following single-nucleotide polymorphisms (SNPs): NEGR1 rs2815752, SEC16B rs10913469, TMEM18 rs6548238, ETV5 rs7647305, GNPDA2 rs10938397, BDNF rs6265 and rs925946, MTCH2 rs10838738, SH2B1 rs7498665, MAF rs1424233, and KCTD15 rs29941 and rs11084753. In the additive model, none of the SNPs were significantly associated with body mass index (BMI). The SH2B1 rs7498665 risk allele was found to be significantly associated with VFA (P=0.00047) but not with BMI or SFA. When the analysis was performed in men and women separately, no significant associations with VFA were observed (P=0.0099 in men and P=0.022 in women). None of the other SNPs were significantly associated with SFA. Our results suggest that there is a VFA-specific genetic factor and that a polymorphism in the SH2B1 gene influences the risk of visceral fat accumulation.


Journal of Human Genetics | 2009

Screening of 336 single-nucleotide polymorphisms in 85 obesity-related genes revealed McKusick-Kaufman syndrome gene variants are associated with metabolic syndrome.

Kikuko Hotta; Takahiro Nakamura; Junichi Takasaki; Hiroshi Takahashi; Atsushi Takahashi; Yoshio Nakata; Seika Kamohara; Kazuaki Kotani; Ryoya Komatsu; Naoto Itoh; Ikuo Mineo; Jun Wada; Hiroaki Masuzaki; Masato Yoneda; Atsushi Nakajima; Tohru Funahashi; Shigeru Miyazaki; Katsuto Tokunaga; Kazuyuki Hamaguchi; Kiyoji Tanaka; Kentaro Yamada; Toshiaki Hanafusa; Shinichi Oikawa; Hironobu Yoshimatsu; Kazuwa Nakao; Toshiie Sakata; Yuji Matsuzawa; Naoyuki Kamatani; Yusuke Nakamura

Genetic factors are important in the development of metabolic syndrome. However, the genetic background of metabolic syndrome remains unclear. We screened polymorphisms in 85 obesity-related genes to determine which may be associated with metabolic syndrome. A total of 336 single-nucleotide polymorphisms (SNPs) in 85 genes selected from the JSNP database were genotyped. We conducted case–control association analyses using patients with metabolic syndrome (n=1080) and control individuals (n=528) who had no risk of the metabolic syndrome. Three SNPs in the McKusick–Kaufman syndrome (MKKS) gene were significantly related to metabolic syndrome by case–control association study; rs1545 (odds ratio (OR) adjusted for age and gender, 1.45; 95% confidence interval (CI), 1.21–1.74; P=0.000043 (additive model)); rs1547 (OR, 1.45; 95% CI, 1.21–1.74; P=0.000041); and rs2294901 (OR, 1.46; 95% CI, 1.22–1.75; P=0.000033). We selected five tag SNPs (rs2294901, rs221667, rs6133922, rs6077785 and rs6108572) in the MKKS gene. They were in one linkage disequilibrium (LD) block and rs6133922 (P=0.00042), rs6077785 (P=0.000013) and rs6108572 (P=0.000019) as well as rs2294901 were significantly associated with metabolic syndrome. TGAAA haplotype was protective against the metabolic syndrome (P=0.0074), and CCGTT haplotype was susceptible (P=0.00070) to the metabolic syndrome. Our data suggest that genetic variations at MKKS gene influence the risk of metabolic syndrome.


Journal of Atherosclerosis and Thrombosis | 2013

Replication study of 15 recently published Loci for body fat distribution in the Japanese population.

Kikuko Hotta; Aya Kitamoto; Takuya Kitamoto; Seiho Mizusawa; Hajime Teranishi; Rina So; Tomoaki Matsuo; Yoshio Nakata; Hideyuki Hyogo; Hidenori Ochi; Takahiro Nakamura; Seika Kamohara; Kazuaki Kotani; Naoto Itoh; Ikuo Mineo; Jun Wada; Masato Yoneda; Atsushi Nakajima; Tohru Funahashi; Shigeru Miyazaki; Katsuto Tokunaga; Hiroaki Masuzaki; Takato Ueno; Kazuaki Chayama; Kazuyuki Hamaguchi; Kentaro Yamada; Toshiaki Hanafusa; Shinichi Oikawa; Toshiie Sakata; Kiyoji Tanaka

Collaboration


Dive into the Kazuwa Nakao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masato Yoneda

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge