Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazuya Nishikawa is active.

Publication


Featured researches published by Kazuya Nishikawa.


Nature Biotechnology | 2001

Cell-free translation reconstituted with purified components.

Yoshihiro Shimizu; Akio Inoue; Yukihide Tomari; Tsutomu Suzuki; Takashi Yokogawa; Kazuya Nishikawa; Takuya Ueda

We have developed a protein-synthesizing system reconstituted from recombinant tagged protein factors purified to homogeneity. The system was able to produce protein at a rate of about 160 μg/ml/h in a batch mode without the need for any supplementary apparatus. The protein products were easily purified within 1 h using affinity chromatography to remove the tagged protein factors. Moreover, omission of a release factor allowed efficient incorporation of an unnatural amino acid using suppressor transfer RNA (tRNA).


Nature Biotechnology | 2002

An unnatural base pair for incorporating amino acid analogs into proteins

Ichiro Hirao; Takashi Ohtsuki; Tsuyoshi Fujiwara; Tsuneo Mitsui; Tomoko Yokogawa; Taeko Okuni; Hiroshi Nakayama; Koji Takio; Takashi Yabuki; Takanori Kigawa; Koichiro Kodama; Takashi Yokogawa; Kazuya Nishikawa; Shigeyuki Yokoyama

An unnatural base pair of 2-amino-6-(2-thienyl)purine (denoted by s) and pyridin-2-one (denoted by y) was developed to expand the genetic code. The ribonucleoside triphosphate of y was site-specifically incorporated into RNA, opposite s in a template, by T7 RNA polymerase. This transcription was coupled with translation in an Escherichia coli cell-free system. The yAG codon in the transcribed ras mRNA was recognized by the CUs anticodon of a yeast tyrosine transfer RNA (tRNA) variant, which had been enzymatically aminoacylated with an unnatural amino acid, 3-chlorotyrosine. Site-specific incorporation of 3-chlorotyrosine into the Ras protein was demonstrated by liquid chromatography–mass spectrometry (LC-MS) analysis of the products. This coupled transcription–translation system will permit the efficient synthesis of proteins with a tyrosine analog at the desired position.


FEBS Letters | 1994

Existence of nuclear-encoded 5S-rRNA in bovine mitochondria.

Shigeo Yoshionari; Tomohiro Koike; Takashi Yokogawa; Kazuya Nishikawa; Takuya Ueda; Kin-ichiro Miura; Kimitsuna Watanabe

A number of proteins functioning in mitochondria are synthesized in the cytoplasm and imported into the mitochondria via specific transport systems. In mammals, on the contrary, mitochondrial membranes have generally been considered to be impermeable to nucleic acids. However, here we show that an RNA with 120 nucleotides, the sequence of which is identical to that of the nuclear‐encoded 5S RNA, exists in bovine mitochondria, although the mitochondrial genome encodes no 5S RNA gene. This RNA molecule was found to be retained in purified bovine mitochondria as well as in the mitoplasts, even after extensive treatment with an RNase, demonstrating that the 5S RNA is actually located inside the mitochondrial inner membrane. The 5S rRNA molecule was also shown to exist in mitochondria from rabbit and chicken.


Journal of Molecular Evolution | 1994

Relationship among coelacanths, lungfishes, and tetrapods: A phylogenetic analysis based on mitochondrial cytochrome oxidase I gene sequences

Shin-ichi Yokobori; Masami Hasegawa; Takuya Ueda; Norihiro Okada; Kazuya Nishikawa; Kimitsuna Watanabe

To clarify the relationship among coelacanths, lungfishes, and tetrapods, the amino acid sequences deduced from the nucleotide sequences of mitochondrial cytochrome oxidase subunit I (COI) genes were compared. The phylogenetic tree of these animals, including the coelacanth Latimeria chalumnae and the lungfish Lepidosiren paradoxa, was inferred by several methods. These analyses consistently indicate a coelacanth/lungfish clade, to which little attention has been paid by previous authors with the exception of some morphologists. Overall evidence of other mitochondrial genes reported previously and the results of this study equally support the coelacanth/lungfish and lungfish/tetrapod clades, ruling out the coelacanth/tetrapod clade.


Journal of Biological Chemistry | 2009

Aquifex aeolicus tRNA (N2,N2-Guanine)-dimethyltransferase (Trm1) Catalyzes Transfer of Methyl Groups Not Only to Guanine 26 but Also to Guanine 27 in tRNA

Takako Awai; Satoshi Kimura; Chie Tomikawa; Anna Ochi; Ihsanawati; Yoshitaka Bessho; Shigeyuki Yokoyama; Satoshi Ohno; Kazuya Nishikawa; Takashi Yokogawa; Tsutomu Suzuki; Hiroyuki Hori

Transfer RNA (N2,N2-guanine)-dimethyltransferase (Trm1) catalyzes N2,N2-dimethylguanine formation at position 26 (m22G26) in tRNA. In the reaction, N2-guanine at position 26 (m2G26) is generated as an intermediate. The trm1 genes are found only in archaea and eukaryotes, although it has been reported that Aquifex aeolicus, a hyper-thermophilic eubacterium, has a putative trm1 gene. To confirm whether A. aeolicus Trm1 has tRNA methyltransferase activity, we purified recombinant Trm1 protein. In vitro methyl transfer assay revealed that the protein has a strong tRNA methyltransferase activity. We confirmed that this gene product is expressed in living A. aeolicus cells and that the enzymatic activity exists in cell extract. By preparing 22 tRNA transcripts and testing their methyl group acceptance activities, it was demonstrated that this Trm1 protein has a novel tRNA specificity. Mass spectrometry analysis revealed that it catalyzes methyl transfers not only to G26 but also to G27 in substrate tRNA. Furthermore, it was confirmed that native tRNACys has an m22G26m2G27 or m22G26m22G27 sequence, demonstrating that these modifications occur in living cells. Kinetic studies reveal that the m2G26 formation is faster than the m2G27 formation and that disruption of the G27-C43 base pair accelerates velocity of the G27 modification. Moreover, we prepared an additional 22 mutant tRNA transcripts and clarified that the recognition sites exist in the T-arm structure. This long distance recognition results in multisite recognition by the enzyme.


Nucleic Acids Research | 2010

Optimization of the hybridization-based method for purification of thermostable tRNAs in the presence of tetraalkylammonium salts

Takashi Yokogawa; Yusuke Kitamura; Daigo Nakamura; Satoshi Ohno; Kazuya Nishikawa

We found that both tetramethylammonium chloride (TMA-Cl) and tetra-ethylammonium chloride (TEA-Cl), which are used as monovalent cations for northern hybridization, drastically destabilized the tertiary structures of tRNAs and enhanced the formation of tRNA•oligoDNA hybrids. These effects are of great advantage for the hybridization-based method for purification of specific tRNAs from unfractionated tRNA mixtures through the use of an immobilized oligoDNA complementary to the target tRNA. Replacement of NaCl by TMA-Cl or TEA-Cl in the hybridization buffer greatly improved the recovery of a specific tRNA, even from unfractionated tRNAs derived from a thermophile. Since TEA-Cl destabilized tRNAs more strongly than TMA-Cl, it was necessary to lower the hybridization temperature at the sacrifice of the purity of the recovered tRNA when using TEA-Cl. Therefore, we propose two alternative protocols, depending on the desired properties of the tRNA to be purified. When the total recovery of the tRNA is important, hybridization should be carried out in the presence of TEA-Cl. However, if the purity of the recovered tRNA is important, TMA-Cl should be used for the hybridization. In principle, this procedure for tRNA purification should be applicable to any small-size RNA whose gene sequence is already known.


Journal of Molecular Evolution | 1999

Gene contents and organization of a mitochondrial DNA segment of the squid Loligo bleekeri.

Junji Sasuga; Shin-ichi Yokobori; Masayuki Kaifu; Takuya Ueda; Kazuya Nishikawa; Kimitsuna Watanabe

Abstract: The nucleotide sequence of a 9240-base pair DNA fragment of the mitochondrial (mt) genome of a squid, Loligo bleekeri, was determined, in which 8 protein and 14 tRNA genes were identified. The gene organization of the mt-genome exhibits a greater resemblance to the gene organization of arthropods and a chiton, Katharina tunicata, than to those of a mussel, Mytilus edulis, and land snails. A cloverleaf-like structure was observed between the genes for subunits 4 and 5 of NADH dehydrogenase (ND4 and -5), which is considered to have originated from histidine tRNA. It is presumed that this structure functions as a transcriptional punctuation signal for the maturation of the ND4 and ND5 mRNAs.


Biochimie | 1994

Unique structure of new serine tRNAs responsible for decoding leucine codon CUG in various Candida species and their putative ancestral tRNA genes

Takuya Ueda; Tsutomu Suzuki; T. Tokogawa; Kazuya Nishikawa; Kimitsuna Watanabe

In an asporogenic yeast, Candida cylindracea, codon CUG is not translated as leucine but as serine. On the basis of our recent work on the determination of the genetic code using in vitro translation systems coupled with isolation of the corresponding tRNA molecules, it appears that this non-universal genetic code is unitized not only in C cylindracea but also in various Hemiascomycetes. Here we show that in addition to the species already reported, three pathogenic yeasts, C guilliermondii, C lusitaniae and C tropicalis, have tRNA(Ser)CAG, indicating that this non-universal genetic code (CUG=Ser) also exists in these species. Determination of their primary structures revealed that the uridine conserved at position 33 in usual tRNAs, is replaced by guanosine or cytidine. This suggests that the three-dimensional structures of the anticodon loop of these tRNAs differ from the conventional structure comprising the U turn in this position. Moreover, we succeeded in isolating putative ancestral serine tRNA genes whose sequences are highly homologous to tRNA(Ser)CAG in each case. These tRNA genes all have the anticodon sequence CGA corresponding to the codon UCG, indicating that tRNA(Ser)CAG might have emerged from tRNA(Ser)CGA during evolutionary change of the assignment of codon CUG.


Nucleic Acids Research | 1994

Unusual anticodon loop structure found in E.coli lysine tRNA

Kimitsuna Watanabe; Nobuhiro Hayashi; Atsusi Oyama; Kazuya Nishikawa; Takuya Ueda; Kin-ichiro Miura

Although both tRNA(Lys) and tRNA(Glu) of E. coli possess similar anticodon loop sequences, with the same hypermodified nucleoside 5-methylaminomethyl-2-thiouridine (mnm5s2U) at the first position of their anticodons, the anticodon loop structures of these two tRNAs containing the modified nucleoside appear to be quite different as judged from the following observations. (1) The CD band derived from the mnm5s2U residue is negative for tRNA(Glu), but positive for tRNA(Lys). (2) The mnm5s2U monomer itself and the mnm5s2U-containing anticodon loop fragment of tRNA(Lys) show the same negative CD bands as that of tRNA(Glu). (3) The positive CD band of tRNA(Lys) changes to negative when the temperature is raised. (4) The reactivity of the mnm5s2U residue toward H2O2 is much lower for tRNA(Lys) than for tRNA(Glu). These features suggest that tRNA(Lys) has an unusual anticodon loop structure, in which the mnm5s2U residue takes a different conformation from that of tRNA(Glu); whereas the mnm5s2U base of tRNA(Glu) has no direct bonding with other bases and is accessible to a solvent, that of tRNA(Lys) exists as if in some way buried in its anticodon loop. The limited hydrolysis of both tRNAs by various RNases suggests that some differences exist in the higher order structures of tRNA(Lys) and tRNA(Glu). The influence of the unusual anticodon loop structure observed for tRNA(Lys) on its function in the translational process is also discussed.


Biochimica et Biophysica Acta | 1997

PRIMARY SEQUENCE OF MITOCHONDRIAL TRNAARG OF A NEMATODE ASCARIS SUUM : OCCURRENCE OF UNMODIFIED ADENOSINE AT THE FIRST POSITION OF THE ANTICODON

Yoh-ich Watanabe; Hiromichi Tsurui; Takuya Ueda; Rieko Furusihima-Shimogawara; Shinzaburo Takamiya; Kiyoshi Kita; Kazuya Nishikawa; Kimitsuna Watanabe

Mitochondrial tRNA(Arg) from a nematode, Ascaris suum, was purified and sequenced at the RNA level. An unmodified adenosine was found to exist at the anticodon first position, suggesting that, contrary to the conventional wobble rule, the anticodon ACG of the tRNA can translate all the CGN codons.

Collaboration


Dive into the Kazuya Nishikawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nobuhiro Hayashi

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shin-ichi Yokobori

Tokyo University of Pharmacy and Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge