Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazuyoshi Hosomichi is active.

Publication


Featured researches published by Kazuyoshi Hosomichi.


Genome Research | 2008

The amphioxus genome illuminates vertebrate origins and cephalochordate biology

Linda Z. Holland; Ricard Albalat; Kaoru Azumi; Èlia Benito-Gutiérrez; Matthew J. Blow; Marianne Bronner-Fraser; Frédéric Brunet; Thomas Butts; Simona Candiani; Larry J. Dishaw; David E. K. Ferrier; Jordi Garcia-Fernàndez; Jeremy J. Gibson-Brown; Carmela Gissi; Adam Godzik; Finn Hallböök; Dan Hirose; Kazuyoshi Hosomichi; Tetsuro Ikuta; Hidetoshi Inoko; Masanori Kasahara; Jun Kasamatsu; Takeshi Kawashima; Ayuko Kimura; Masaaki Kobayashi; Zbynek Kozmik; Kaoru Kubokawa; Vincent Laudet; Gary W. Litman; Alice C. McHardy

Cephalochordates, urochordates, and vertebrates evolved from a common ancestor over 520 million years ago. To improve our understanding of chordate evolution and the origin of vertebrates, we intensively searched for particular genes, gene families, and conserved noncoding elements in the sequenced genome of the cephalochordate Branchiostoma floridae, commonly called amphioxus or lancelets. Special attention was given to homeobox genes, opsin genes, genes involved in neural crest development, nuclear receptor genes, genes encoding components of the endocrine and immune systems, and conserved cis-regulatory enhancers. The amphioxus genome contains a basic set of chordate genes involved in development and cell signaling, including a fifteenth Hox gene. This set includes many genes that were co-opted in vertebrates for new roles in neural crest development and adaptive immunity. However, where amphioxus has a single gene, vertebrates often have two, three, or four paralogs derived from two whole-genome duplication events. In addition, several transcriptional enhancers are conserved between amphioxus and vertebrates--a very wide phylogenetic distance. In contrast, urochordate genomes have lost many genes, including a diversity of homeobox families and genes involved in steroid hormone function. The amphioxus genome also exhibits derived features, including duplications of opsins and genes proposed to function in innate immunity and endocrine systems. Our results indicate that the amphioxus genome is elemental to an understanding of the biology and evolution of nonchordate deuterostomes, invertebrate chordates, and vertebrates.


Journal of Human Genetics | 2009

The HLA genomic loci map: expression, interaction, diversity and disease

Takashi Shiina; Kazuyoshi Hosomichi; Hidetoshi Inoko; Jerzy K. Kulski

The human leukocyte antigen (HLA) super-locus is a genomic region in the chromosomal position 6p21 that encodes the six classical transplantation HLA genes and at least 132 protein coding genes that have important roles in the regulation of the immune system as well as some other fundamental molecular and cellular processes. This small segment of the human genome has been associated with more than 100 different diseases, including common diseases, such as diabetes, rheumatoid arthritis, psoriasis, asthma and various other autoimmune disorders. The first complete and continuous HLA 3.6 Mb genomic sequence was reported in 1999 with the annotation of 224 gene loci, including coding and non-coding genes that were reviewed extensively in 2004. In this review, we present (1) an updated list of all the HLA gene symbols, gene names, expression status, Online Mendelian Inheritance in Man (OMIM) numbers, including new genes, and latest changes to gene names and symbols, (2) a regional analysis of the extended class I, class I, class III, class II and extended class II subregions, (3) a summary of the interspersed repeats (retrotransposons and transposons), (4) examples of the sequence diversity between different HLA haplotypes, (5) intra- and extra-HLA gene interactions and (6) some of the HLA gene expression profiles and HLA genes associated with autoimmune and infectious diseases. Overall, the degrees and types of HLA super-locus coordinated gene expression profiles and gene variations have yet to be fully elucidated, integrated and defined for the processes involved with normal cellular and tissue physiology, inflammatory and immune responses, and autoimmune and infectious diseases.


Journal of Human Genetics | 2012

Next-generation sequencing: impact of exome sequencing in characterizing Mendelian disorders

Bahareh Rabbani; Nejat Mahdieh; Kazuyoshi Hosomichi; Hirofumi Nakaoka; Ituro Inoue

Traditional approaches for gene mapping from candidate gene studies to positional cloning strategies have been applied for Mendelian disorders. Since 2005, next-generation sequencing (NGS) technologies are improving as rapid, high-throughput and cost-effective approaches to fulfill medical sciences and research demands. Using NGS, the underlying causative genes are directly distinguished via a systematic filtering, in which the identified gene variants are checked for novelty and functionality. During the past 2 years, the role of more than 100 genes has been distinguished in rare Mendelian disorders by means of whole-exome sequencing (WES). Combination of WES with traditional approaches, consistent with linkage analysis, has had the greatest impact on those disorders following autosomal mode of inheritance; in more than 60 identified genes, the causal variants have been transmitted at homozygous or compound heterozygous state. Recent literatures focusing on identified new causal genes in Mendelian disorders using WES are reviewed in the present survey.


Journal of Immunology | 2007

Extended Gene Map Reveals Tripartite Motif, C-Type Lectin, and Ig Superfamily Type Genes within a Subregion of the Chicken MHC-B Affecting Infectious Disease

Takashi Shiina; W. Elwood Briles; Ronald M. Goto; Kazuyoshi Hosomichi; Kazuyo Yanagiya; Sayoko Shimizu; Hidetoshi Inoko; Marcia M. Miller

MHC haplotypes have a remarkable influence on whether tumors form following infection of chickens with oncogenic Marek’s disease herpesvirus. Although resistance to tumor formation has been mapped to a subregion of the chicken MHC-B region, the gene or genes responsible have not been identified. A full gene map of the subregion has been lacking. We have expanded the MHC-B region gene map beyond the 92-kb core previously reported for another haplotype revealing the presence of 46 genes within 242 kb in the Red Jungle Fowl haplotype. Even though MHC-B is structured differently, many of the newly revealed genes are related to loci typical of the MHC in other species. Other MHC-B loci are homologs of genes found within MHC paralogous regions (regions thought to be derived from ancient duplications of a primordial immune defense complex where genes have undergone differential silencing over evolutionary time) on other chromosomes. Still others are similar to genes that define the NK complex in mammals. Many of the newly mapped genes display allelic variability and fall within the MHC-B subregion previously shown to affect the formation of Marek’s disease tumors and hence are candidates for genes conferring resistance.


Genetics | 2006

Rapid Evolution of Major Histocompatibility Complex Class I Genes in Primates Generates New Disease Alleles in Humans via Hitchhiking Diversity

Takashi Shiina; Masao Ota; Sayoko Shimizu; Yoshihiko Katsuyama; Nami Hashimoto; Miwa Takasu; Tatsuya Anzai; Jerzy K. Kulski; Eri Kikkawa; Taeko Naruse; Natsuki Kimura; Kazuyo Yanagiya; Atsushi Watanabe; Kazuyoshi Hosomichi; Sakae Kohara; Chie Iwamoto; Yumi Umehara; Alice Meyer; Valérie Wanner; Kazumi Sano; Cécile Macquin; Kazuho Ikeo; Katsushi Tokunaga; Takashi Gojobori; Hidetoshi Inoko; Seiamak Bahram

A plausible explanation for many MHC-linked diseases is lacking. Sequencing of the MHC class I region (coding units or full contigs) in several human and nonhuman primate haplotypes allowed an analysis of single nucleotide variations (SNV) across this entire segment. This diversity was not evenly distributed. It was rather concentrated within two gene-rich clusters. These were each centered, but importantly not limited to, the antigen-presenting HLA-A and HLA-B/-C loci. Rapid evolution of MHC-I alleles, as evidenced by an unusually high number of haplotype-specific (hs) and hypervariable (hv) (which could not be traced to a single species or haplotype) SNVs within the classical MHC-I, seems to have not only hitchhiked alleles within nearby genes, but also hitchhiked deleterious mutations in these same unrelated loci. The overrepresentation of a fraction of these hvSNV (hv1SNV) along with hsSNV, as compared to those that appear to have been maintained throughout primate evolution (trans-species diversity; tsSNV; included within hv2SNV) tends to establish that the majority of the MHC polymorphism is de novo (species specific). This is most likely reminiscent of the fact that these hsSNV and hv1SNV have been selected in adaptation to the constantly evolving microbial antigenic repertoire.


BMC Genomics | 2013

Phase-defined complete sequencing of the HLA genes by next-generation sequencing

Kazuyoshi Hosomichi; Timothy A. Jinam; Shigeki Mitsunaga; Hirofumi Nakaoka; Ituro Inoue

BackgroundThe human leukocyte antigen (HLA) region, the 3.8-Mb segment of the human genome at 6p21, has been associated with more than 100 different diseases, mostly autoimmune diseases. Due to the complex nature of HLA genes, there are difficulties in elucidating complete HLA gene sequences especially HLA gene haplotype structures by the conventional sequencing method. We propose a novel, accurate, and cost-effective method for generating phase-defined complete sequencing of HLA genes by using indexed multiplex next generation sequencing.ResultsA total of 33 HLA homozygous samples, 11 HLA heterozygous samples, and 3 parents-child families were subjected to phase-defined HLA gene sequencing. We applied long-range PCR to amplify six HLA genes (HLA-A, -C, -B, DRB1, -DQB1, and –DPB1) followed by transposase-based library construction and multiplex sequencing with the MiSeq sequencer. Paired-end reads (2 × 250 bp) derived from the sequencer were aligned to the six HLA gene segments of UCSC hg19 allowing at most 80 bases mismatch. For HLA homozygous samples, the six amplicons of an individual were pooled and simultaneously sequenced and mapped as an individual-tagging method. The paired-end reads were aligned to corresponding genes of UCSC hg19 and unambiguous, continuous sequences were obtained. For HLA heterozygous samples, each amplicon was separately sequenced and mapped as a gene-tagging method. After alignments, we detected informative paired-end reads harboring SNVs on both forward and reverse reads that are used to separate two chromosomes and to generate two phase-defined sequences in an individual. Consequently, we were able to determine the phase-defined HLA gene sequences from promoter to 3′-UTR and assign up to 8-digit HLA allele numbers, regardless of whether the alleles are rare or novel. Parent–child trio-based sequencing validated our sequencing and phasing methods.ConclusionsOur protocol generated phased-defined sequences of the entire HLA genes, resulting in high resolution HLA typing and new allele detection.


Journal of Immunology | 2008

Contribution of mutation, recombination, and gene conversion to chicken MHC-B haplotype diversity.

Kazuyoshi Hosomichi; Marcia M. Miller; Ronald M. Goto; Yujun Wang; Shingo Suzuki; Jerzy K. Kulski; Masahide Nishibori; Hidetoshi Inoko; Kei Hanzawa; Takashi Shiina

The Mhc is a highly conserved gene region especially interesting to geneticists because of the rapid evolution of gene families found within it. High levels of Mhc genetic diversity often exist within populations. The chicken Mhc is the focus of considerable interest because of the strong, reproducible infectious disease associations found with particular Mhc-B haplotypes. Sequence data for Mhc-B haplotypes have been lacking thereby hampering efforts to systematically resolve which genes within the Mhc-B region contribute to well-defined Mhc-B-associated disease responses. To better understand the genetic factors that generate and maintain genomic diversity in the Mhc-B region, we determined the complete genomic sequence for 14 Mhc-B haplotypes across a region of 59 kb that encompasses 14 gene loci ranging from BG1 to BF2. We compared the sequences using alignment, phylogenetic, and genome profiling methods. We identified gene structural changes, synonymous and non-synonymous polymorphisms, insertions and deletions, and allelic gene rearrangements or exchanges that contribute to haplotype diversity. Mhc-B haplotype diversity appears to be generated by a number of mutational events. We found evidence that some Mhc-B haplotypes are derived by whole- and partial-allelic gene conversion and homologous reciprocal recombination, in addition to nucleotide mutations. These data provide a framework for further analyses of disease associations found among these 14 haplotypes and additional haplotypes segregating and evolving in wild and domesticated populations of chickens.


Journal of Human Genetics | 2015

The impact of next-generation sequencing technologies on HLA research

Kazuyoshi Hosomichi; Takashi Shiina; Atsushi Tajima; Ituro Inoue

In the past decade, the development of next-generation sequencing (NGS) has paved the way for whole-genome analysis in individuals. Research on the human leukocyte antigen (HLA), an extensively studied molecule involved in immunity, has benefitted from NGS technologies. The HLA region, a 3.6-Mb segment of the human genome at 6p21, has been associated with more than 100 different diseases, primarily autoimmune diseases. Recently, the HLA region has received much attention because severe adverse effects of various drugs are associated with particular HLA alleles. Owing to the complex nature of the HLA genes, classical direct sequencing methods cannot comprehensively elucidate the genomic makeup of HLA genes. Thus far, several high-throughput HLA-typing methods using NGS have been developed. In HLA research, NGS facilitates complete HLA sequencing and is expected to improve our understanding of the mechanisms through which HLA genes are modulated, including transcription, regulation of gene expression and epigenetics. Most importantly, NGS may also permit the analysis of HLA-omics. In this review, we summarize the impact of NGS on HLA research, with a focus on the potential for clinical applications.


BMC Genomics | 2006

The major histocompatibility complex (Mhc) class IIB region has greater genomic structural flexibility and diversity in the quail than the chicken.

Kazuyoshi Hosomichi; Takashi Shiina; Shingo Suzuki; Masayuki Tanaka; Sayoko Shimizu; Shigehisa Iwamoto; Hiromi Hara; Yutaka Yoshida; Jerzy K. Kulski; Hidetoshi Inoko; Kei Hanzawa

BackgroundThe quail and chicken major histocompatibility complex (Mhc) genomic regions have a similar overall organization but differ markedly in that the quail has an expanded number of duplicated class I, class IIB, natural killer (NK)-receptor-like, lectin-like and BG genes. Therefore, the elucidation of genetic factors that contribute to the greater Mhc diversity in the quail would help to establish it as a model experimental animal in the investigation of avian Mhc associated diseases.Aims and approachesThe main aim here was to characterize the genetic and genomic features of the transcribed major quail MhcIIB (CojaIIB) region that is located between the Tapasin and BRD2 genes, and to compare our findings to the available information for the chicken MhcIIB (BLB). We used four approaches in the study of the quail MhcIIB region, (1) haplotype analyses with polymorphic loci, (2) cloning and sequencing of the RT-PCR CojaIIB products from individuals with different haplotypes, (3) genomic sequencing of the CojaIIB region from the individuals with the different haplotypes, and (4) phylogenetic and duplication analysis to explain the variability of the region between the quail and the chicken.ResultsOur results show that the Tapasin-BRD2 segment of the quail Mhc is highly variable in length and in gene transcription intensity and content. Haplotypic sequences were found to vary in length between 4 to 11 kb. Tapasin-BRD2 segments contain one or two major transcribed CojaIIBs that were probably generated by segmental duplications involving c-type lectin-like genes and NK receptor-like genes, gene fusions between two CojaIIBs and transpositions between the major and minor CojaIIB segments. The relative evolutionary speed for generating the MhcIIBs genomic structures from the ancestral BLB2 was estimated to be two times faster in the quail than in the chicken after their separation from a common ancestor. Four types of genomic rearrangement elements (GRE), composed of simple tandem repeats (STR), were identified in the MhcIIB genomic segment located between the Tapasin-BRD2 genes. The GREs have many more STR numbers in the quail than in the chicken that displays strong linkage disequilibrium.ConclusionThis study suggests that the Mhc classIIB region has a flexible genomic structure generated by rearrangement elements and rapid SNP accumulation probably as a consequence of the quail adapting to environmental conditions and pathogens during its migratory history after its divergence from the chicken.


Immunogenetics | 2007

A third broad lineage of major histocompatibility complex (MHC) class I in teleost fish; MHC class II linkage and processed genes

Johannes Martinus Dijkstra; Takayuki Katagiri; Kazuyoshi Hosomichi; Kazuyo Yanagiya; Hidetoshi Inoko; Mitsuru Ototake; Takashi Aoki; Keiichiro Hashimoto; Takashi Shiina

Most of the previously studied teleost MHC class I molecules can be classified into two broad lineages: “U” and “Z/ZE.” However, database reports on genes in cyprinid and salmonid fishes show that there is a third major lineage, which lacks detailed analysis so far. We designated this lineage “L” because of an intriguing linkage characteristic. Namely, one zebrafish L locus is closely linked with MHC class II loci, despite the extensively documented nonlinkage of teleost class I with class II. The L lineage consists of highly variable, nonclassical MHC class I genes, and has no apparent orthologues outside teleost fishes. Characteristics that distinguish the L lineage from most other MHC class I are (1) absence of two otherwise highly conserved tryptophan residues W51 and W60 in the α1 domain, (2) a low GC content of the α1 and α2 exons, and (3) an HINLTL motif including a possible glycosylation site in the α3 domain. In rainbow trout (Oncorhynchus mykiss) we analyzed several intact L genes in detail, including their genomic organization and transcription pattern. The gene Onmy-LAA is quite different from the genes Onmy-LBA, Onmy-LCA, Onmy-LDA, and Onmy-LEA, while the latter four are similar and categorized as “Onmy-LBA-like.” Whereas the Onmy-LAA gene is organized like a canonical MHC class I gene, the Onmy-LBA-like genes are processed and lack all introns except intron 1. Onmy-LAA is predominantly expressed in the intestine, while the Onmy-LBA-like transcripts display a rather homogeneous tissue distribution. To our knowledge, this is the first description of an MHC class I lineage with multiple copies of processed genes, which are intact and transcribed. The present study significantly improves the knowledge of MHC class I variation in teleosts.

Collaboration


Dive into the Kazuyoshi Hosomichi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ituro Inoue

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Hirofumi Nakaoka

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kei Hanzawa

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge