Kazuyoshi Kirima
University of Tokushima
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kazuyoshi Kirima.
Biochemical and Biophysical Research Communications | 2002
Masanori Yoshizumi; Koichiro Tsuchiya; Yuki Suzaki; Kazuyoshi Kirima; Moe Kyaw; Jae-Hak Moon; Junji Terao; Toshiaki Tamaki
We previously reported that quercetin, a bioflavonoid belonging to polyphenols, inhibited Angiotensin II (Ang II)-induced vascular smooth muscle cell (VSMC) hypertrophy through the inhibition of c-Jun N-terminal kinase (JNK) activation. However, we recently found that orally administered quercetin appeared in plasma as glucuronide-conjugated forms in rats and humans. Therefore we examined the effect of chemically synthesized quercetin glucuronide on Ang II-induced mitogen-activated protein (MAP) kinase activation and hypertrophy of cultured rat aortic smooth muscle cells (RASMC). Ang II activated extracellular signal-regulated kinase (ERK)1/2, JNK, and p38 in RASMC. Ang II-induced JNK activation was inhibited by quercetin 3-O-beta-d-glucuronide (Q3GA) whereas ERK1/2 and p38 activations were not affected. Q3GA scavenged 1,1-diphenyl-2-picrylhydrazyl radical measured by a method of electron paramagnetic resonance. Q3GA also inhibited Ang II-induced increases in activator protein-1 (AP-1) DNA binding, a downstream transcription factor of JNK. Finally, Ang II-induced [3H]leucine incorporation into RASMC was abolished by Q3GA. These findings suggest that the preventing effect of Q3GA on Ang II-induced VSMC hypertrophy is attributable in part to its inhibitory effect on JNK and the AP-1 signaling pathway. Q3GA would be an active metabolite of quercetin in plasma and may possess a preventing effect for cardiovascular diseases relevant to VSMC growth.
British Journal of Pharmacology | 2002
Masanori Yoshizumi; Toshiaki Kogame; Yuki Suzaki; Yoshiko Fujita; Moe Kyaw; Kazuyoshi Kirima; Keisuke Ishizawa; Koichiro Tsuchiya; Shoji Kagami; Toshiaki Tamaki
Ebselen (2‐phenyl‐1,2‐benzisoselenazol‐3[2H]‐one) is a selenoorganic compound exhibiting both glutathione peroxidase activity and antioxidant activity. Although it has been reported that ebselen is effective for oxidative stress‐induced neuronal damage both in vivo and clinically, the precise mechanisms of the efficacy have not yet been elucidated. Thus, we hypothesized that ebselen may affect reactive oxygen species‐induced mitogen‐activated protein (MAP) kinase activation in cultured PC12 cells. Our findings showed that hydrogen peroxide (H2O2) stimulated rapid and significant activation of extracellular signal‐regulated kinase (ERK)1/2, c‐Jun N‐terminal kinase (JNK) and p38 in PC12 cells, which is a model of catecholamine‐containing neurons. H2O2‐induced JNK activation was inhibited by ebselen, whereas ERK1/2 and p38 activation by H2O2 were not affected by ebselen. Inhibition by ebselen of H2O2‐induced hydroxyl radical generation in PC12 cells was observed using electron paramagnetic resonance measurements. Ebselen also inhibited H2O2‐induced increases in DNA binding activity of activator protein‐1 (AP‐1), a downstream transcription factor of JNK, composed of the c‐Jun homo/heterodimer. Finally, pretreatment of cells with ebselen resulted in a significant recovery from cell death including apoptosis by H2O2 in PC12 cells. These findings suggest that ebselen attenuates oxidative stress‐induced neuronal cell death through the inhibition of the JNK and AP‐1 signalling pathway. Thus, inhibition of JNK by ebselen may imply its usefulness for treatment of ischaemic cerebral diseases relevant to neuronal cell death.
Biochemical Pharmacology | 2002
Moe Kyaw; Masanori Yoshizumi; Koichiro Tsuchiya; Kazuyoshi Kirima; Yuki Suzaki; Shinji Abe; Toyoshi Hasegawa; Toshiaki Tamaki
We previously found that human chymase cleaves big endothelins (ETs) at the Tyr(31)-Gly(32) bond and produces 31-amino acid ETs (1-31), without any further degradation products. In the present study, we investigated the effects of various antioxidants on the ET-1 (1-31)-induced change in intracellular signaling and proliferation of cultured rat aortic smooth muscle cells (RASMC). ET-1 (1-31) stimulated rapid and significant activation of the mitogen-activated protein (MAP) kinase family, i.e. extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun NH(2)-terminal kinase (JNK), and p38 MAPK, in RASMC to an extent similar to that of ET-1. All of the antioxidants examined, i.e. N-acetyl-L-cysteine (NAC), diphenyleneiodonium chloride (DPI), and L-(+)-ascorbic acid (ascorbic acid), inhibited both ET-1 (1-31)- and ET-1-induced JNK and p38 MAPK activation but not ERK1/2 activation. Electron paramagnetic resonance (EPR) spectroscopy measurements revealed that NAC, DPI, and ascorbic acid inhibited xanthine oxidase-induced superoxide (O(2)(.-)) generation in a cell-free system. ET-1 (1-31) in addition to ET-1 increased the generation of cellular reactive oxygen species (ROS) in RASMC. ET-1 (1-31)- and ET-1-induced cellular ROS generation was inhibited similarly by NAC, DPI, and ascorbic acid in RASMC. Gel-mobility shift analysis showed that ET-1 (1-31) and ET-1 caused an increase in activator protein-1 (AP-1)-DNA binding activity in RASMC that was inhibited by the above three antioxidants. ET-1 (1-31) increased [3H]thymidine incorporation into cells to an extent similar to that of ET-1. This ET-1 (1-31)-induced increase in [3H]thymidine incorporation was also inhibited by NAC and DPI, but not by ascorbic acid. These results suggest that antioxidants inhibit ET-1 (1-31)-induced RASMC proliferation by inhibiting ROS generation within the cells. The underlying mechanisms of the inhibition of cellular proliferation by antioxidants may be explained, in part, by the inhibition of JNK activation and the resultant inhibition of AP-1-DNA binding.
Biochemical Journal | 2002
Koichiro Tsuchiya; Kazuyoshi Kirima; Masanori Yoshizumi; Hitoshi Houchi; Toshiaki Tamaki; Ronald P. Mason
The object of the present study is to investigate whether the physiologically dominant thiol compounds such as GSH and cysteine or their nitrosothiol compounds affect the formation of the iron- N -methyl-D-glucamine dithiocarbamate [(MGD)(2)Fe(2+)]-nitric oxide complex. The present study provided experimental evidence that physiological concentrations of GSH (approx. 5 mM) and L-cysteine (approx. 0.5 mM) accelerated the formation of the (MGD)(2)Fe(2+)-NO complex from nitrite by two and three times respectively. The rate constants for the reduction of (MGD)(3)Fe(3+) to (MGD)(2)Fe(2+) by GSH and cysteine were calculated as 1.3 and 2.0x10(2) M(-1).s(-1) respectively. Furthermore, depletion of GSH was demonstrated in PC12 cells, and thiol compounds enhanced the formation of reactive oxygen species by the (MGD)(2)Fe(2+) complex by accelerating its redox turnover. The main effect of the physiological concentration of thiols was the reduction of (MGD)(3)Fe(3+). S -nitrosoglutathione spontaneously reacted with (MGD)(2)Fe(2+) to produce the (MGD)(2)Fe(2+)-NO complex with a 1:2 stoichiometry. In fact, (MGD)(2)Fe(2+) was as good an indicator of nitrosothiols as it was of NO itself. The present study elucidates the difficulties of utilizing the (MGD)(2)Fe(2+) complex for the quantification of NO in biological samples, especially in vivo.
Life Sciences | 2000
Daisuke Inui; Masanori Yoshizumi; Yuki Suzaki; Kazuyoshi Kirima; Koichiro Tsuchiya; Hitoshi Houchi; Shoji Kagami; Toshiaki Tamaki
It was reported that human chymase cleaves big endothelins (ETs) at the Tyr31-Gly32 bond and produces 31-amino acid ETs(1-31). In this study, we investigated the effect of ET-1(1-31) on p38 mitogen-activated protein kinase (p38-MAPK) activity in human mesangial cells (HMCs). By measuring the kinase activity, we demonstrated that ET-1 (1-31) activated the p38-MAPK dose-dependently (10(-9) M to 10(-7) M), which was inhibited by SB203580. The p38-MAPK activation induced by ET-1(1-31) peaked at 10 minutes. BQ123 almost abolished ET-1(1-31)-induced p38-MAPK activation, whereas BQ788 failed to inhibit it. These findings suggest that the stimulatory effect of ET-1(1-31) on p38-MAPK activation is mediated through ET(A) or ET(A)-like receptor. In conclusion, ET-1(1-31) induced increase in p38-MAPK activation in cultured HMCs.
Life Sciences | 1999
Hiroaki Yasuoka; Masanori Yoshizumi; Daisuke Inui; Naoko Okishima; Hitoshi Houchi; Kazuyoshi Kirima; Syuzo Oshita; Hiroshi Kido; Toshiaki Tamaki
We found that human chymase selectively produces 31-amino-acid length endothelins (1-31) (ETs(1-31)). We investigated the effect of synthetic ET-1(1-31) on intracellular free Ca2+ concentration ([Ca2+]i) in cultured human mesangial cells. ET-1(1-31) increased [Ca2+]i in a concentration-dependent manner to a similar extent as ET-1. The ET-1 (1-31)-induced [Ca2+]i increase was not influenced by removal of extracellular Ca2+ but was inhibited by thapsigargin. ET-1(1-31)-induced [Ca2+]i increase was not affected by phosphoramidon. It was inhibited by BQ123, but not by BQ788. These results suggest that ET-1(1-31) by itself exhibits bioactive properties probably through endothelin ET(A) or ET(A)-like receptors. Since human chymase has been reported to exist in the kidney, ET-1(1-31) may be a candidate substance for mesangium-relevant diseases.
American Journal of Physiology-heart and Circulatory Physiology | 2005
Koichiro Tsuchiya; Yasuhisa Kanematsu; Masanori Yoshizumi; Hideki Ohnishi; Kazuyoshi Kirima; Yuki Izawa; Michiyo Shikishima; Tatsuhiro Ishida; Shuji Kondo; Shoji Kagami; Yoshiharu Takiguchi; Toshiaki Tamaki
Hypertension Research | 2001
Moe Kyaw; Masanori Yoshizumi; Koichiro Tsuchiya; Kazuyoshi Kirima; Toshiaki Tamaki
Molecular Pharmacology | 2001
Masanori Yoshizumi; Koichiro Tsuchiya; Kazuyoshi Kirima; Moe Kyaw; Yuki Suzaki; Toshiaki Tamaki
Chemical & Pharmaceutical Bulletin | 2004
Shinji Abe; Kazuyoshi Kirima; Koichiro Tsuchiya; Masumi Okamoto; Toyoshi Hasegawa; Hitoshi Houchi; Masanori Yoshizumi; Toshiaki Tamaki