Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazuyoshi Tsutsui is active.

Publication


Featured researches published by Kazuyoshi Tsutsui.


Hormones and Behavior | 2007

Rat RFamide-related peptide-3 stimulates GH secretion, inhibits LH secretion, and has variable effects on sex behavior in the adult male rat

Marlie A. Johnson; Kazuyoshi Tsutsui; Gregory S. Fraley

A recently described avian neuropeptide, gonadotropin inhibitory hormone (GnIH), has been shown to have seasonal regulatory effects on the hypothalamic-pituitary-gonadotropin axis (HPG) in several avian species. In the bird, GnIH expression is increased during the photorefractory period and has inhibitory effects on the HPG. A recently described mammalian neuropeptide, RF-amide-related peptide-3 (RFRP-3), may be genetically related and functionally similar to this avian neuropeptide. The purposes of this study were to first see if rat RFRP-3 is expressed in the male rat brain and second to determine if ICV injections of RFRP-3 will have effects on feeding and sex behaviors, as well as hormone release from the anterior pituitary. Results confirm other studies in that immunoreactive cell bodies and fibers are observable in areas of the male rat brain known to control the HPG and feeding and sex behaviors. RFRP-3 fibers are also observed in close proximity to GnRH immunoreactive cell bodies. Behavioral tests indicate that high but not low ICV RFRP-3 (500 vs. 100 ng, respectively) significantly (p<0.05) suppressed all facets of male sex behavior while not having any observable effects on their ability to ambulate. Sex behavior was later exhibited when those same male rats received the ICV vehicle. While suppressing sex behavior, ICV RFRP-3 significantly (p<0.05) increased food intake compared to controls. ICV RFRP-3 also significantly reduced plasma levels of luteinizing hormone but increased growth hormone regardless of the time of day; however, at no time did RFRP-3 alter plasma levels of FSH, thyroid hormone, or cortisol. These results indicate that although RFRP-3 has similar effects on LH as observed with GnIH in avian species, in the rat RFRP-3 has additional roles in regulating feeding and growth.


Nature Medicine | 2010

Salt-sensitive hypertension in circadian clock-deficient Cry-null mice involves dysregulated adrenal Hsd3b6.

Masao Doi; Yukari Takahashi; Rie Komatsu; Fumiyoshi Yamazaki; Hiroyuki Yamada; Shogo Haraguchi; Noriaki Emoto; Yasushi Okuno; Gozoh Tsujimoto; Akihiro Kanematsu; Osamu Ogawa; Takeshi Todo; Kazuyoshi Tsutsui; Gijsbertus T. J. van der Horst; Hitoshi Okamura

Malfunction of the circadian clock has been linked to the pathogenesis of a variety of diseases. We show that mice lacking the core clock components Cryptochrome-1 (Cry1) and Cryptochrome-2 (Cry2) (Cry-null mice) show salt-sensitive hypertension due to abnormally high synthesis of the mineralocorticoid aldosterone by the adrenal gland. An extensive search for the underlying cause led us to identify type VI 3β-hydroxyl-steroid dehydrogenase (Hsd3b6) as a new hypertension risk factor in mice. Hsd3b6 is expressed exclusively in aldosterone-producing cells and is under transcriptional control of the circadian clock. In Cry-null mice, Hsd3b6 messenger RNA and protein levels are constitutively high, leading to a marked increase in 3β-hydroxysteroid dehydrogenase-isomerase (3β-HSD) enzymatic activity and, as a consequence, enhanced aldosterone production. These data place Hsd3b6 in a pivotal position through which circadian clock malfunction is coupled to the development of hypertension. Translation of these findings to humans will require clinical examination of human HSD3B1 gene, which we found to be functionally similar to mouse Hsd3b6.


Endocrinology | 2008

Potent Action of RFamide-Related Peptide-3 on Pituitary Gonadotropes Indicative of a Hypophysiotropic Role in the Negative Regulation of Gonadotropin Secretion

Iain J. Clarke; Ika P. Sari; Yue Qi; Jeremy T. Smith; Helena C. Parkington; Takayoshi Ubuka; Javed Iqbal; Qun Li; Alan J. Tilbrook; Kevin Morgan; Adam J. Pawson; Kazuyoshi Tsutsui; Robert P. Millar; George E. Bentley

We identified a gene in the ovine hypothalamus encoding for RFamide-related peptide-3 (RFRP-3), and tested the hypothesis that this system produces a hypophysiotropic hormone that inhibits the function of pituitary gonadotropes. The RFRP-3 gene encodes for a peptide that appears identical to human RFRP-3 homolog. Using an antiserum raised against RFRP-3, cells were localized to the dorsomedial hypothalamic nucleus/paraventricular nucleus of the ovine brain and shown to project to the neurosecretory zone of the ovine median eminence, predicating a role for this peptide in the regulation of anterior pituitary gland function. Ovine RFRP-3 peptide was tested for biological activity in vitro and in vivo, and was shown to reduce LH and FSH secretion in a specific manner. RFRP-3 potently inhibited GnRH-stimulated mobilization of intracellular calcium in gonadotropes. These data indicate that RFRP-3 is a specific and potent mammalian gonadotropin-inhibiting hormone, and that it acts upon pituitary gonadotropes to reduce GnRH-stimulated gonadotropin secretion.


Journal of Neuroendocrinology | 2003

Gonadotropin-Inhibitory Peptide in Song Sparrows (Melospiza melodia) in Different Reproductive Conditions, and in House Sparrows (Passer domesticus) Relative to Chicken-Gonadotropin-Releasing Hormone

George E. Bentley; Nicole Perfito; Kazuyoshi Ukena; Kazuyoshi Tsutsui; John C. Wingfield

Gonadotropin‐releasing hormone (GnRH) regulates reproduction in all vertebrates. Until recently, an antagonistic neuropeptide for gonadotropin was unknown. The discovery of an RFamide peptide in quail that inhibits gonadotropin release in vitro raised the possibility of direct hypothalamic inhibition of gonadotropin release. This peptide has now been named gonadotropin‐inhibitory hormone (GnIH). We investigated GnIH presence in the hypothalamus of two seasonally breeding songbird species, house sparrows (Passer domesticus) and song sparrows (Melospiza melodia). Using immunocytochemistry (ICC), GnIH‐containing neurones were localized in both species in the paraventricular nucleus, with GnIH‐containing fibres visible in multiple brain locations, including the median eminence and brainstem. Double‐label ICC with light microscopy and fluorescent ICC with confocal microscopy indicate a high probability of colocalization of GnIH with GnRH neurones and fibres within the avian brain. It is plausible that GnIH could be acting at the level of the hypothalamus to regulate gonadotropin release as well as at the pituitary gland. In a photoperiod manipulation experiment, GnIH‐containing neurones were larger in birds at the termination of the breeding season than at other times, consistent with a role for this neuropeptide in the regulation of seasonal breeding. We have yet to elucidate the dynamics of GnIH synthesis and release at different times of year, but the data imply temporal regulation of this peptide. In summary, GnIH has the potential to regulate gonadotropin release at more than one level, and its distribution is suggestive of multiple regulatory functions in the central nervous system.


Neuroscience Research | 2000

Novel brain function: biosynthesis and actions of neurosteroids in neurons.

Kazuyoshi Tsutsui; Kazuyoshi Ukena; Mariko Usui; Hirotaka Sakamoto; Minoru Takase

Peripheral steroid hormones act on brain tissues through intracellular receptor-mediated mechanisms to regulate several important brain neuronal functions. Therefore, the brain is considered to be a target site of steroid hormones. However, it is now established that the brain itself also synthesizes steroids de novo from cholesterol. The pioneering discovery of Baulieu and his colleagues, using mammals, and our studies with non-mammals have opened the door of a new research field. Such steroids synthesized in the brain are called neurosteroids. Because certain structures in vertebrate brains have the capacity to produce neurosteroids, identification of neurosteroidogenic cells in the brain is essential to understand the physiological role of neurosteroids in brain functions. Glial cells are generally accepted to be the major site for neurosteroid formation, but the concept of neurosteroidogenesis in brain neurons has up to now been uncertain. We recently demonstrated neuronal neurosteroidogenesis in the brain and indicated that the Purkinje cell, a typical cerebellar neuron, actively synthesizes several neurosteroids de novo from cholesterol in both mammals and non-mammals. Pregnenolone sulfate, one of neurosteroids synthesized in the Purkinje neuron, may contribute to some important events in the cerebellum by modulating neurotransmission. Progesterone, produced as a neurosteroid in this neuron only during neonatal life, may be involved in the promotion of neuronal and glial growth and neuronal synaptic contact in the cerebellum. More recently, biosynthesis and actions of neurosteroids in pyramidal neurons of the hippocampus were also demonstrated. These serve an excellent model for the study of physiological roles of neurosteroids in the brain, because both cerebellar Purkinje neurons and hippocampal neurons play an important role in memory and learning. This paper summarizes the advances made in our understanding of neurosteroids, produced in neurons, and their actions.


Frontiers in Neuroendocrinology | 2010

Gonadotropin-inhibitory hormone (GnIH) and its control of central and peripheral reproductive function.

Kazuyoshi Tsutsui; George E. Bentley; Grégoy Y. Bédécarrats; Tomohiro Osugi; Takayoshi Ubuka; Lance J. Kriegsfeld

Identification of novel neurohormones that regulate the reproductive axis is essential for the progress of neuroendocrinology. The decapeptide gonadotropin-releasing hormone (GnRH) is the primary factor responsible for the hypothalamic control of gonadotropin secretion. Gonadal sex steroids and inhibin modulate gonadotropin secretion via feedback from the gonads, but a neuropeptide that directly inhibits gonadotropin secretion was unknown in vertebrates until 2000 when a hypothalamic dodecapeptide serving this function was discovered in quail. Because of its action on cultured pituitary in quail, it was named gonadotropin-inhibitory hormone (GnIH). GnIH acts on the pituitary and on GnRH neurons in the hypothalamus via a novel G protein-coupled receptor (GPR147). GPR74 may also be a possible candidate GnIH receptor. GnIH decreases gonadotropin synthesis and release, inhibiting gonadal development and maintenance. Melatonin stimulates the expression and release of GnIH via melatonin receptors expressed by GnIH neurons. GnIH actions and interactions with GnRH seem common not only to several avian species, but also to mammals. Thus, GnIH is considered to have an evolutionarily conserved role in controlling vertebrate reproduction, and GnIH homologs have also been identified in the hypothalamus of mammals. As in birds, mammalian GnIH homologs act to inhibit gonadotropin release in several species. More recent evidence in birds and mammals indicates that GnIH may operate at the level of the gonads as an autocrine/paracrine regulator of steroidogenesis and gametogenesis. Importantly, GnIH in birds and mammals appears to act at all levels of the hypothalamo-pituitary-gonadal (HPG) axis, and possibly over different time-frames (minutes-days). Thus, GnIH and its homologs appear to act as key neurohormones controlling vertebrate reproduction. The discovery of GnIH has enabled us to understand and manipulate vertebrate reproduction from an entirely new perspective.


Journal of Endocrinology | 2008

Hypophysiotropic role of RFamide-related peptide-3 in the inhibition of LH secretion in female rats

Masahiro Murakami; Toshiya Matsuzaki; Takeshi Iwasa; Toshiyuki Yasui; Minoru Irahara; Tomohiro Osugi; Kazuyoshi Tsutsui

Gonadotropin-inhibitory hormone (GnIH), a newly discovered hypothalamic RFamide peptide, inhibits reproductive activity by decreasing gonadotropin synthesis and release in birds. The gene of the mammalian RFamide-related peptides (RFRP) is orthologous to the GnIH gene. This Rfrp gene gives rise to the two biologically active peptides RFRP-1 (NPSF) and RFRP-3 (NPVF), and i.c.v. injections of RFRP-3 suppress LH secretion in several mammalian species. In this study, we show whether RFRP-3 affects LH secretion at the pituitary level and/or via the release of GnRH at the hypothalamus in mammals. To investigate the suppressive effects of RFRP-3 on the mean level of LH secretion and the frequency of pulsatile LH secretion in vivo, ovariectomized (OVX) mature rats were administered RFRP-3 using either i.c.v. or i.v. injections. Furthermore, the effect of RFRP-3 on LH secretion was also investigated using cultured female rat pituitary cells. With i.v. administrations, RFRP-3 significantly reduced plasma LH concentrations when compared with the physiological saline group. However, after i.c.v. RFRP-3 injections, neither the mean level of LH concentrations nor the frequency of the pulsatile LH secretion was affected. When using cultured pituitary cells, in the absence of GnRH, the suppressive effect of RFRP-3 on LH secretion was not clear, but when GnRH was present, RFRP-3 significantly suppressed LH secretion. These results suggest that RFRP-3 does not affect LH secretion via the release of GnRH, and that RFRP-3 directly acts upon the pituitary to suppress GnRH-stimulated LH secretion in female rats.


PLOS ONE | 2009

Identification of Human GnIH Homologs, RFRP-1 and RFRP-3, and the Cognate Receptor, GPR147 in the Human Hypothalamic Pituitary Axis

Takayoshi Ubuka; Kevin Morgan; Adam J. Pawson; Tomohiro Osugi; Vishwajit S. Chowdhury; Hiroyuki Minakata; Kazuyoshi Tsutsui; Robert P. Millar; George E. Bentley

The existence of a hypothalamic gonadotropin-inhibiting system has been elusive. A neuropeptide named gonadotropin-inhibitory hormone (GnIH, SIKPSAYLPLRF-NH2) which directly inhibits gonadotropin synthesis and release from the pituitary was recently identified in quail hypothalamus. Here we identify GnIH homologs in the human hypothalamus and characterize their distribution and biological activity. GnIH homologs were isolated from the human hypothalamus by immunoaffinity purification, and then identified as MPHSFANLPLRF-NH2 (human RFRP-1) and VPNLPQRF-NH2 (human RFRP-3) by mass spectrometry. Immunocytochemistry revealed GnIH-immunoreactive neuronal cell bodies in the dorsomedial region of the hypothalamus with axonal projections to GnRH neurons in the preoptic area as well as to the median eminence. RT-PCR and subsequent DNA sequencing of the PCR products identified human GnIH receptor (GPR147) mRNA expression in the hypothalamus as well as in the pituitary. In situ hybridization further identified the expression of GPR147 mRNA in luteinizing hormone producing cells (gonadotropes). Human RFRP-3 has recently been shown to be a potent inhibitor of gonadotropin secretion in cultured sheep pituitary cells by inhibiting Ca2+ mobilization. It also directly modulates GnRH neuron firing. The identification of two forms of GnIH (RFRP-1 and RFRP-3) in the human hypothalamus which targets human GnRH neurons and gonadotropes and potently inhibit gonadotropin in sheep models provides a new paradigm for the regulation of hypothalamic-pituitary-gonadal axis in man and a novel means for manipulating reproductive functions.


Endocrinology | 2012

Identification, expression, and physiological functions of Siberian hamster gonadotropin-inhibitory hormone.

Takayoshi Ubuka; Kazuhiko Inoue; Yujiro Fukuda; Takanobu Mizuno; Kazuyoshi Ukena; Lance J. Kriegsfeld; Kazuyoshi Tsutsui

Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that inhibits gonadotropin secretion in birds and mammals. To further understand its physiological roles in mammalian reproduction, we identified its precursor cDNA and endogenous mature peptides in the Siberian hamster brain. The Siberian hamster GnIH precursor cDNA encoded two RFamide-related peptide (RFRP) sequences. SPAPANKVPHSAANLPLRF-NH(2) (Siberian hamster RFRP-1) and TLSRVPSLPQRF-NH(2) (Siberian hamster RFRP-3) were confirmed as mature endogenous peptides by mass spectrometry from brain samples purified by immunoaffinity chromatography. GnIH mRNA expression was higher in long days (LD) compared with short days (SD). GnIH mRNA was also highly expressed in SD plus pinealectomized animals, whereas expression was suppressed by melatonin, a nocturnal pineal hormone, administration. GnIH-immunoreactive (-ir) neurons were localized to the dorsomedial region of the hypothalamus, and GnIH-ir fibers projected to hypothalamic and limbic structures. The density of GnIH-ir perikarya and fibers were higher in LD and SD plus pinealectomized hamsters than in LD plus melatonin or SD animals. The percentage of GnRH neurons receiving close appositions from GnIH-ir fiber terminals was also higher in LD than SD, and GnIH receptor was expressed in GnRH-ir neurons. Finally, central administration of hamster RFRP-1 or RFRP-3 inhibited LH release 5 and 30 min after administration in LD. In sharp contrast, both peptides stimulated LH release 30 min after administration in SD. These results suggest that GnIH peptides fine tune LH levels via its receptor expressed in GnRH-ir neurons in an opposing fashion across the seasons in Siberian hamsters.


Endocrinology | 2009

Molecular Evolution of Multiple Forms of Kisspeptins and GPR54 Receptors in Vertebrates

Yeo Reum Lee; Kenta Tsunekawa; Mi Jin Moon; Haet Nim Um; Jong-Ik Hwang; Tomohiro Osugi; Naohito Otaki; Yuya Sunakawa; Kyungjin Kim; Hubert Vaudry; Hyuk Bang Kwon; Jae Young Seong; Kazuyoshi Tsutsui

Kisspeptin and its receptor GPR54 play important roles in mammalian reproduction and cancer metastasis. Because the KiSS and GPR54 genes have been identified in a limited number of vertebrate species, mainly in mammals, the evolutionary history of these genes is poorly understood. In the present study, we have cloned multiple forms of kisspeptin and GPR54 cDNAs from a variety of vertebrate species. We found that fish have two forms of kisspeptin genes, KiSS-1 and KiSS-2, whereas Xenopus possesses three forms of kisspeptin genes, KiSS-1a, KiSS-1b, and KiSS-2. The nonmammalian KiSS-1 gene was found to be the ortholog of the mammalian KiSS-1 gene, whereas the KiSS-2 gene is a novel form, encoding a C-terminally amidated dodecapeptide in the Xenopus brain. This study is the first to identify a mature form of KiSS-2 product in the brain of any vertebrate. Likewise, fish possess two receptors, GPR54-1 and GPR54-2, whereas Xenopus carry three receptors, GPR54-1a, GPR54-1b, and GPR54-2. Sequence identity and genome synteny analyses indicate that Xenopus GPR54-1a is a human GPR54 ortholog, whereas Xenopus GPR54-1b is a fish GPR54-1 ortholog. Both kisspeptins and GPR54s were abundantly expressed in the Xenopus brain, notably in the hypothalamus, suggesting that these ligand-receptor pairs have neuroendocrine and neuromodulatory roles. Synthetic KiSS-1 and KiSS-2 peptides activated GPR54s expressed in CV-1 cells with different potencies, indicating differential ligand selectivity. These data shed new light on the molecular evolution of the kisspeptin-GPR54 system in vertebrates.

Collaboration


Dive into the Kazuyoshi Tsutsui's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takayoshi Ubuka

Monash University Malaysia Campus

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takayoshi Ubuka

Monash University Malaysia Campus

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge