Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kazuyuki Kuchitsu is active.

Publication


Featured researches published by Kazuyuki Kuchitsu.


Science | 2008

Local Positive Feedback Regulation Determines Cell Shape in Root Hair Cells

Seiji Takeda; Catherine Gapper; Hidetaka Kaya; Elizabeth Bell; Kazuyuki Kuchitsu; Liam Dolan

The specification and maintenance of growth sites are tightly regulated during cell morphogenesis in all organisms. ROOT HAIR DEFECTIVE 2 reduced nicotinamide adenine dinucleotide phosphate (RHD2 NADPH) oxidase–derived reactive oxygen species (ROS) stimulate a Ca2+ influx into the cytoplasm that is required for root hair growth in Arabidopsis thaliana. We found that Ca2+, in turn, activated the RHD2 NADPH oxidase to produce ROS at the growing point in the root hair. Together, these components could establish a means of positive feedback regulation that maintains an active growth site in expanding root hair cells. Because the location and stability of growth sites predict the ultimate form of a plant cell, our findings demonstrate how a positive feedback mechanism involving RHD2, ROS, and Ca2+ can determine cell shape.


Journal of Biological Chemistry | 2008

Synergistic Activation of the Arabidopsis NADPH Oxidase AtrbohD by Ca2+ and Phosphorylation

Yoko Ogasawara; Hidetaka Kaya; Goro Hiraoka; Fumiaki Yumoto; Sachie Kimura; Yasuhiro Kadota; Haruka Hishinuma; Eriko Senzaki; Satoshi Yamagoe; Koji Nagata; Masayuki Nara; Kazuo Suzuki; Masaru Tanokura; Kazuyuki Kuchitsu

Plant respiratory burst oxidase homolog (rboh) proteins, which are homologous to the mammalian 91-kDa glycoprotein subunit of the phagocyte oxidase (gp91phox) or NADPH oxidase 2 (NOX2), have been implicated in the production of reactive oxygen species (ROS) both in stress responses and during development. Unlike mammalian gp91phox/NOX2 protein, plant rboh proteins have hydrophilic N-terminal regions containing two EF-hand motifs, suggesting that their activation is dependent on Ca2+. However, the significance of Ca2+ binding to the EF-hand motifs on ROS production has been unclear. By employing a heterologous expression system, we showed that ROS production by Arabidopsis thaliana rbohD (AtrbohD) was induced by ionomycin, which is a Ca2+ ionophore that induces Ca2+ influx into the cell. This activation required a conformational change in the EF-hand region, as a result of Ca2+ binding to the EF-hand motifs. We also showed that AtrbohD was directly phosphorylated in vivo, and that this was enhanced by the protein phosphatase inhibitor calyculin A (CA). Moreover, CA itself induced ROS production and dramatically enhanced the ionomycin-induced ROS production of AtrbohD. Our results suggest that Ca2+ binding and phosphorylation synergistically activate the ROS-producing enzyme activity of AtrbohD.


Molecular Plant | 2013

The Calcineurin B-Like Calcium Sensors CBL1 and CBL9 Together with Their Interacting Protein Kinase CIPK26 Regulate the Arabidopsis NADPH Oxidase RBOHF

Maria M. Drerup; Kathrin Schlücking; Kenji Hashimoto; Prabha Manishankar; Leonie Steinhorst; Kazuyuki Kuchitsu; Jörg Kudla

Stimulus-specific accumulation of second messengers like reactive oxygen species (ROS) and Ca(2+) are central to many signaling and regulation processes in plants. However, mechanisms that govern the reciprocal interrelation of Ca(2+) and ROS signaling are only beginning to emerge. NADPH oxidases of the respiratory burst oxidase homolog (RBOH) family are critical components contributing to the generation of ROS while Calcineurin B-like (CBL) Ca(2+) sensor proteins together with their interacting kinases (CIPKs) have been shown to function in many Ca(2+)- signaling processes. In this study, we identify direct functional interactions between both signaling systems. We report that the CBL-interacting protein kinase CIPK26 specifically interacts with the N-terminal domain of RBOHF in yeast two-hybrid analyses and with the full-length RBOHF protein in plant cells. In addition, CIPK26 phosphorylates RBOHF in vitro and co-expression of either CBL1 or CBL9 with CIPK26 strongly enhances ROS production by RBOHF in HEK293T cells. Together, these findings identify a direct interconnection between CBL-CIPK-mediated Ca(2+) signaling and ROS signaling in plants and provide evidence for a synergistic activation of the NADPH oxidase RBOHF by direct Ca(2+)-binding to its EF-hands and Ca(2+)-induced phosphorylation by CBL1/9-CIPK26 complexes.


Protoplasma | 1993

N-acetylchitooligosaccharides, biotic elicitor for phytoalexin production, induce transient membrane depolarization in suspension-cultured rice cells

Kazuyuki Kuchitsu; Munehiro Kikuyama; N. Shibuya

SummaryN-acetylchitooligosaccharides (fragments of chitin) elicit the production of phytoalexin in suspension-cultured rice cells. This oligosaccharide elicitor induced rapid and transient membrane depolarization at sub-nanomolar concentrations. Only the oligomers with a certain degree of polymerization were active, while deacetylated chitooligosaccharides caused no effect. Such specificity coincided well with that for the elicitor activity, suggesting possible involvement of this transient change in membrane potential as one of the initial signals in the signal transduction sequence for the activation of defense responses.


FEBS Letters | 1993

Identification of a novel high-affinity binding site for N-acetylchitooligosaccharide elicitor in the membrane fraction from suspension-cultured rice cells.

Naoto Shibuya; Hanae Kaku; Kazuyuki Kuchitsu; Mary J. Maliarik

Binding experiments using a 125I‐labeled tyramine conjugate of N‐acetylchitooctaose, a highly potent elicitor for the induction of phytoalexin production in rice cells, and a microsomal membrane preparation from suspension‐cultured rice cells showed the presence of a novel high‐affinity binding site for this oligosaccharide. The binding of the ligand was saturable and the Scatchard plot analysis of the results indicated the presence of a single class of binding site with a K d of 5.4 nM which is comparable with that reported for the binding of the hepta‐β‐glucoside elicitor in soybean membrane. The ligand binding was inhibited by unlabeled N‐acetylchitoheptaose but not by its deacetylated form. These characteristics of this binding site coincide well with the specificity and sensitivity for the elicitor in several assay systems, suggesting the possible involvement of this binding site in the recognition of the elicitor in vivo.


Biochimica et Biophysica Acta | 2012

Protein phosphorylation is a prerequisite for the Ca2+-dependent activation of Arabidopsis NADPH oxidases and may function as a trigger for the positive feedback regulation of Ca2+ and reactive oxygen species.

Sachie Kimura; Hidetaka Kaya; Tomoko Kawarazaki; Goro Hiraoka; Eriko Senzaki; Masataka Michikawa; Kazuyuki Kuchitsu

Reactive oxygen species (ROS) produced by NADPH oxidases play critical roles in signalling and development. Given the high toxicity of ROS, their production is tightly regulated. In Arabidopsis, respiratory burst oxidase homologue F (AtrbohF) encodes NADPH oxidase. Here we characterised the activation of AtRbohF using a heterologous expression system. AtRbohF exhibited ROS-producing activity that was synergistically activated by protein phosphorylation and Ca2+. The two EF-hand motifs of AtRbohF in the N-terminal cytosolic region were crucial for its Ca2+-dependent activation. AtrbohD and AtrbohF are involved in stress responses. Although the activation mechanisms for AtRbohD and AtRbohF were similar, AtRbohD had significantly greater ROS-producing activity than AtRbohF, which may reflect their functional diversity, at least in part. We further characterised the interrelationship between Ca2+ and phosphorylation regarding activation and found that protein phosphorylation-induced activation was independent of Ca2+. In contrast, K-252a, a protein kinase inhibitor, inhibited the Ca2+-dependent ROS-producing activity of AtRbohD and AtRbohF in a dose-dependent manner, suggesting that protein phosphorylation is a prerequisite for the Ca2+-dependent activation of Rboh. Positive feedback regulation of Ca2+ and ROS through AtRbohC has been proposed to play a critical role in root hair tip growth. Our findings suggest that Rboh phosphorylation is the initial trigger for the plant Ca2+-ROS signalling network.


The Plant Cell | 2014

Ca2+-Activated Reactive Oxygen Species Production by Arabidopsis RbohH and RbohJ Is Essential for Proper Pollen Tube Tip Growth

Hidetaka Kaya; Ryo Nakajima; Megumi Iwano; Masahiro M. Kanaoka; Sachie Kimura; Seiji Takeda; Tomoko Kawarazaki; Eriko Senzaki; Yuki Hamamura; Tetsuya Higashiyama; Seiji Takayama; Mitsutomo Abe; Kazuyuki Kuchitsu

Arabidopsis RbohH and RbohJ, NADPH oxidases expressed in pollen tubes, are activated by Ca2+ via their EF-hand motifs to produce reactive oxygen species (ROS) that are essential for proper pollen tube tip growth in vivo. Positive feedback regulation involving Ca2+ and ROS production mediated by RbohH and RbohJ is proposed to shape the long tubular structure of the pollen tube. In flowering plants, pollen germinates on the stigma and pollen tubes grow through the style to fertilize the ovules. Enzymatic production of reactive oxygen species (ROS) has been suggested to be involved in pollen tube tip growth. Here, we characterized the function and regulation of the NADPH oxidases RbohH and RbohJ (Respiratory burst oxidase homolog H and J) in pollen tubes in Arabidopsis thaliana. In the rbohH and rbohJ single mutants, pollen tube tip growth was comparable to that of the wild type; however, tip growth was severely impaired in the double mutant. In vivo imaging showed that ROS accumulation in the pollen tube was impaired in the double mutant. Both RbohH and RbohJ, which contain Ca2+ binding EF-hand motifs, possessed Ca2+-induced ROS-producing activity and localized at the plasma membrane of the pollen tube tip. Point mutations in the EF-hand motifs impaired Ca2+-induced ROS production and complementation of the double mutant phenotype. We also showed that a protein phosphatase inhibitor enhanced the Ca2+-induced ROS-producing activity of RbohH and RbohJ, suggesting their synergistic activation by protein phosphorylation and Ca2+. Our results suggest that ROS production by RbohH and RbohJ is essential for proper pollen tube tip growth, and furthermore, that Ca2+-induced ROS positive feedback regulation is conserved in the polarized cell growth to shape the long tubular cell.


Phytochemistry | 2015

Reactive oxygen species in cell wall metabolism and development in plants

Anna Kärkönen; Kazuyuki Kuchitsu

Although reactive oxygen species (ROS) are highly toxic substances that are produced during aerobic respiration and photosynthesis, many studies have demonstrated that ROS, such as superoxide anion radical (O2(·-)) and hydrogen peroxide (H2O2), are produced in the plant cell wall in a highly regulated manner. These molecules are important signalling messengers playing key roles in controlling a broad range of physiological processes, such as cellular growth and development, as well as adaptation to environmental changes. Given the toxicity of ROS, especially of hydroxyl radical (·OH), the enzymatic ROS production needs to be tightly regulated both spatially and temporally. Respiratory burst oxidase homologues (Rboh) have been identified as ROS-producing NADPH oxidases, which act as key signalling nodes integrating multiple signal transduction pathways in plants. Also other enzyme systems, such as class III peroxidases, amine oxidases, quinone reductases and oxalate oxidases contribute to apoplastic ROS production, some especially in certain plant taxa. Here we discuss the interrelationship among different enzymes producing ROS in the plant cell wall, as well as the physiological roles of the ROS produced.


Trends in Plant Science | 2013

Plant mechanosensing and Ca2+ transport

Takamitsu Kurusu; Kazuyuki Kuchitsu; Masataka Nakano; Yoshitaka Nakayama; Hidetoshi Iida

Mechanical stimuli generate Ca(2+) signals and influence growth and development in plants. Recently, candidates for Ca(2+)-permeable mechanosensitive (MS) channels have been identified. These channels are thought to be responsible for sensing osmotic shock, touch, and gravity. One candidate is the MscS-like (MSL) protein family, a homolog of the typical bacterial MS channels. Some of the MSL proteins are localized to plastids to maintain their shape and size. Another candidate is the mid1-complementing activity (MCA) protein family, which is structurally unique to the plant kingdom. MCA proteins are localized in the plasma membrane and are suggested to be involved in mechanosensing and to be functionally related to reactive oxygen species (ROS) signaling. Here, we review their structural features and role in planta.


The Plant Cell | 2011

A Novel Calcium Binding Site in the Slow Vacuolar Cation Channel TPC1 Senses Luminal Calcium Levels

Beata Dadacz-Narloch; Diana Beyhl; Christina Larisch; Enrique J. López-Sanjurjo; Ralf Reski; Kazuyuki Kuchitsu; Thomas Müller; Dirk Becker; Gerald Schönknecht; Rainer Hedrich

The slow vacuolar channel is the dominant cation channel of the vacuolar membrane and is regulated by cytosolic as well as vacuolar calcium. Here, the vacuolar calcium binding site is characterized at the molecular level, adding to our understanding of calcium signaling in the extracytosolic space. Cytosolic calcium homeostasis is pivotal for intracellular signaling and requires sensing of calcium concentrations in the cytosol and accessible stores. Numerous Ca2+ binding sites have been characterized in cytosolic proteins. However, little is known about Ca2+ binding inside organelles, like the vacuole. The slow vacuolar (SV) channel, encoded by Arabidopsis thaliana TPC1, is regulated by luminal Ca2+. However, the D454/fou2 mutation in TPC1 eliminates vacuolar calcium sensitivity and increases store calcium content. In a search for the luminal calcium binding site, structure modeling indicated a possible coordination site formed by residues Glu-450, Asp-454, Glu-456, and Glu-457 on the luminal side of TPC1. Each Glu residue was replaced by Gln, the modified genes were transiently expressed in loss-of-TPC1-function protoplasts, and SV channel responses to luminal calcium were recorded by patch clamp. SV channels lacking any of the four negatively charged residues appeared altered in calcium sensitivity of channel gating. Our results indicate that Glu-450 and Asp-454 are directly involved in Ca2+ binding, whereas Glu-456 and Glu-457 are probably involved in connecting the luminal Ca2+ binding site to the channel gate. This novel vacuolar calcium binding site represents a potential tool to address calcium storage in plants.

Collaboration


Dive into the Kazuyuki Kuchitsu's collaboration.

Top Co-Authors

Avatar

Takamitsu Kurusu

Tokyo University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shigeru Hanamata

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar

Sachie Kimura

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katsumi Higashi

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar

Masaya Ishikawa

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge