Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ke Guo is active.

Publication


Featured researches published by Ke Guo.


Physiologia Plantarum | 2010

Influence of drought intensity on the response of six woody karst species subjected to successive cycles of drought and rewatering

Changcheng Liu; Yuguo Liu; Ke Guo; Yuan-Run Zheng; Guoqing Li; Li-Fei Yu; Rui Yang

Tolerance to the effects of drought and subsequent recovery after a rainfall appear to be critical for plants in the karst regions of southwestern China, which are characterized by frequent but temporary drought events. This study investigated the effects of drought intensity and repetition on photosynthesis and photoprotection mechanisms of karst plants during successive cycles of drought and subsequent recovery. Leaf water potential, gas exchange, chlorophyll fluorescence and several associated metabolic processes were studied in six plant species, including Pyracantha fortuneana (PF), Rosa cymosa (RC), Broussonetia papyrifera (BP), Cinnamomum bodinieri (CB), Platycarya longipes (PL) and Pteroceltis tatarinowii (PT) during three cycles of drought treatments at four different intensities. The four treatments were: well-watered, mild drought, moderate drought and severe drought, each followed by rewatering events. We found that limitations to CO(2) diffusion accounted for photosynthetic declines under mild and moderate drought treatments, while metabolic limitations dominated the response to severe drought. Repetition of drought did not intensify the impairment of photosynthetic metabolism regardless of drought intensity in the six species studied. Repetition of severe drought delayed the photosynthetic recoveries in PF, RC and CB after rewatering. Repetition of drought increased thermal dissipation in PF, CB and BP, as well as superoxide dismutase (EC 1.15.1.1) activity in RC and CB. Enhanced photosynthetic performance, measured as increased intrinsic water use efficiency, photosynthetic performance per unit of photosynthetic pigment, maintenance of high thermal dissipation and high ratios of carotenoids to chlorophylls, was observed during the rewatering periods. This enhanced photosynthetic performance allowed for the complete recovery of the six karst species from successive intermittent drought events.


Annals of Botany | 2014

Concentrations and resorption patterns of 13 nutrients in different plant functional types in the karst region of south-western China

Changcheng Liu; Yuguo Liu; Ke Guo; Shijie Wang; Yao Yang

BACKGROUND AND AIMS Elucidating the stoichiometry and resorption patterns of multiple nutrients is an essential requirement for a holistic understanding of plant nutrition and biogeochemical cycling. However, most studies have focused on nitrogen (N) and phosphorus (P), and largely ignored other nutrients. The current study aimed to determine relationships between resorption patterns and leaf nutrient status for 13 nutrient elements in a karst vegetation region. METHODS Plant and soil samples were collected from four vegetation types in the karst region of south-western China and divided into eight plant functional types. Samples of newly expanded and recently senesced leaves were analysed to determine concentrations of boron (B), calcium (Ca), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), molybdenum (Mo), N, sodium (Na), P, sulphur (S) and zinc (Zn). KEY RESULTS Nutrient concentrations of the karst plants were lower than those normally found in other regions of China and the rest of the world, and plant growth was mainly limited by P. Overall, four nutrients revealed resorption [N (resorption efficiency 34·6 %), P (48·4 %), K (63·2 %) and Mg (13·2 %)], seven nutrients [B (-16·1 %), Ca (-44·0 %), Cu (-14·5 %), Fe (-205·5 %), Mn (-72·5 %), Mo (-35·6 %) and Zn (-184·3 %)] showed accumulation in senesced leaves and two nutrients (Na and S) showed no resorption or accumulation. Resorption efficiencies of K and Mg and accumulation of B, Ca, Fe and Mn differed among plant functional types, and this strongly affected litter quality. Resorption efficiencies of N, P and K and accumulation of Ca and Zn increased with decreasing concentrations of these nutrients in green leaves. The N:P, N:K and N:Mg ratios in green leaves predicted resorption proficiency for N, K and Mg, respectively. CONCLUSIONS The results emphasize the fact that nutrient resorption patterns strongly depend on element and plant functional type, which provides new insights into plant nutrient use strategies and nutrient cycling in karst ecosystems.


PLOS ONE | 2013

Organic Carbon Storage in Four Ecosystem Types in the Karst Region of Southwestern China

Yuguo Liu; Changcheng Liu; Shijie Wang; Ke Guo; Jun Yang; Xinshi Zhang; Guoqing Li

Karst ecosystems are important landscape types that cover about 12% of the worlds land area. The role of karst ecosystems in the global carbon cycle remains unclear, due to the lack of an appropriate method for determining the thickness of the solum, a representative sampling of the soil and data of organic carbon stocks at the ecosystem level. The karst region in southwestern China is the largest in the world. In this study, we estimated biomass, soil quantity and ecosystem organic carbon stocks in four vegetation types typical of karst ecosystems in this region, shrub grasslands (SG), thorn shrubbery (TS), forest - shrub transition (FS) and secondary forest (F). The results showed that the biomass of SG, TS, FS, and F is 0.52, 0.85, 5.9 and 19.2 kg m−2, respectively and the corresponding organic cabon storage is 0.26, 0.40, 2.83 and 9.09 kg m−2, respectively. Nevertheless, soil quantity and corresponding organic carbon storage are very small in karst habitats. The quantity of fine earth overlaying the physical weathering zone of the carbonate rock of SG, TS, FS and F is 38.10, 99.24, 29.57 and 61.89 kg m−2, respectively, while the corresponding organic carbon storage is only 3.34, 4.10, 2.37, 5.25 kg m−2, respectively. As a whole, ecosystem organic carbon storage of SG, TS, FS, and F is 3.81, 4.72, 5.68 and 15.1 kg m−2, respectively. These are very low levels compared to other ecosystems in non-karst areas. With the restoration of degraded vegetation, karst ecosystems in southwestern China may play active roles in mitigating the increasing CO2 concentration in the atmosphere.


Trees-structure and Function | 2011

Comparative ecophysiological responses to drought of two shrub and four tree species from karst habitats of southwestern China

Changcheng Liu; Yuguo Liu; Ke Guo; Guoqing Li; Yuan-Run Zheng; Li-Fei Yu; Rui Yang

Drought stress is one of the most important factors in limiting the survival and growth of plants in the harsh karst habitats of southwestern China, especially at the seedling establishment stage. The ecophysiological response to drought stress of native plants with different growth forms is useful for re-vegetation programs. Two shrub and four tree species were studied, including Pyracantha fortuneana (evergreen shrub), Rosa cymosa (deciduous shrub), Cinnamomum bodinieri (evergreen tree), and other three deciduous trees, Broussonetia papyrifera, Platycarya longipes, and Pteroceltis tatarinowii. The seedlings were randomly assigned to four drought treatments, i.e., well-watered, mild drought stress, moderate drought stress, and severe drought stress. Leaf water relations, gas exchange, chlorophyll fluorescence, and growth of the seedlings were investigated. Under severe drought stress, the two shrubs with low leaf area ratio (LAR) maintained higher water status, higher photosynthetic capacity, and larger percent biomass increase than the most of the trees. The two shrubs also had lower specific leaf area, greater intrinsic water use efficiency, and thermal dissipation than the trees. This suggested that the two shrubs had high tolerance to severe drought and were suitable for re-vegetation in harsh habitats. The evergreen C. bodinieri exhibited higher leaf mass ratio (LMR) and LAR than the deciduous species under mild and moderate stress. However, the low maximum quantum efficiency of PSII photochemistry (Fv/Fm) and net assimilation rate, and the sharp decreases of water potential, LMR, LAR, and biomass under severe stress indicated C. bodinieri’s weak tolerance to severe drought. In response to drought stress, the three deciduous trees revealed sharp reductions of biomass due to the large drought-induced decreases of gas exchange, LAR, and LMR. Under drought conditions, the deciduous trees minimized water loss by stomatal closure and by reducing transpiration leaf area and light harvesting through shedding leaves. This suggested that the three deciduous trees were more sensitive to water availability than the shrubs and used avoidance strategies against drought stress. However, the better growth performance of the deciduous trees than that of the shrubs under favorable conditions suggested that deciduous trees could be suitable for habitats with mild and temporary drought stress.


Acta Physiologiae Plantarum | 2011

Exploitation of patchy soil water resources by the clonal vine Ficus tikoua in karst habitats of southwestern China

Changcheng Liu; Yuguo Liu; Ke Guo; Da-Yong Fan; Li-Fei Yu; Rui Yang

The karst habitats of southwestern China are characterized by a highly heterogeneous distribution of water resources. We hypothesized that the clonal integration between connected ramets of the clonal vine Ficus tikoua was an important adaptive strategy to the patchy distribution of water resources in these habitats. We grew ramet pairs (each consisting of a parent and an offspring ramet) in both homogeneously and heterogeneously watered conditions. The offspring ramets were well-watered, whereas their connected parent ramets were randomly assigned to four water treatments: well-watered, mild water stress, moderate water stress, and severe water stress. Increasing water stress decreased leaf water potential, relative water content, net assimilation rate, maximum quantum yield of PSII (F v/F m), and biomass of the parent ramets. Subjecting the parents to water stress significantly increased root biomass and root mass ratio (RMR) of their offspring ramets. Exploitation of plentiful water resources through the increased adventitious roots connected to another soil patch permitted the complete restoration of water relations and photosynthetic capacity of offspring ramets after an initial depression. Water relations and gas exchange of the parents were not affected by the water supply to their connected offspring ramets, suggesting that offspring ramets hardly exported water to the stressed parents. However, net assimilation rate and proline content of the offspring ramets increased when they were connected to water-stressed parents. The compensatory photosynthetic responses of offspring ramets connected to stressed parents revealed an increasing trend as the experiment progressed. Morphological and physiological plasticity of F. tikoua in response to heterogeneous water resources allow them to adapt to karst habitats and be suitable candidates for vegetation restoration projects.


Journal of Plant Ecology-uk | 2018

Stipa steppes in scantily explored regions of the Tibetan Plateau: classification, community characteristics and climatic distribution patterns

Haiwei Zhao; Ke Guo; Yao Yang; Changcheng Liu; Liqing Zhao; Xianguo Qiao; Dongjie Hou; Chenguang Gao

As a unique geographical unit of the earth, the Tibetan Plateau is extensively covered by various Stipa communities. However, their vegetation features have not been reported systematically till now, especially in some scantily explored regions. In this study, we endeavor to reveal the community types, quantitative characteristics and climatic distribution patterns of Stipa steppes in these areas based on primary releves obtained from fieldwork. We collected a total of 223 plots in 79 study sites in the Changthang Plateau and the Yarlung Zangbo Valley, ranging from 79°E to 91°E. The categories of Stipa formations were identified according to the classification scheme in Vegetation of China and then verified by Nonmetric Multidimensional Scaling. We performed detrended correspondence analysis and detrended canonical correspondence analysis to hunt for the alteration of Stipa communities along the precipitation gradient. Quantitative characteristics including species richness, coverage, biomass as well as importance values (IV) of dominant species were calculated and visualized, respectively. Stipa steppes in scantily explored regions of the Tibetan Plateau are classified into 11 formations but major formations are rather limited in number. Formation (form.) Stipa purpurea is the most widespread Stipa assemblages not only in scantily explored regions but also across the whole Tibetan Plateau. The characteristics of Stipa communities, including coverage, species richness, productivity and IV of dominant species, demonstrate the features of typical alpine steppes on the Tibetan Plateau. Precipitation proves to be the prime climatic factor controlling the distribution patterns of Stipa assemblages. Form. Stipa subsessiliflora var. basiplumosa and form. Stipa glareosa normally distribute in arid habitats, but rainfall for the former is of greater variance. Form. Stipa roborowskyi and form. Stipa capillacea favor moderately moist environment. Form. Stipa purpurea and form. Stipa roborowskyi can tolerate a fairly broad range of precipitation.


Polish Journal of Ecology | 2015

The Relative Influence of Environmental and Human Factors on Seed Plant Richness at the Province Scale in China

Guoqing Li; Ke Guo; Changcheng Liu; Yuguo Liu; Chuangye Song; Sheng Du

ABSTRACT Seed plant diversity is under threat due to human over-exploitation and changes in land use. There is a need to identify regions where seed plant diversity is most at risk and establish nature reserves to protect the most important species. This study collected province scale seed plant richness data and corresponding environmental, social and, economic data in China in order to assess the impact of environmental and socio-economic factors on seed plant diversity and to quantify the relative importance of climate, human disturbance, and habitat heterogeneity on the distribution of seed plant diversity. A downscaling model was established to map the spatial distribution of seed plant diversity at a 1-km resolution. The results showed that temperature and precipitation seasonality, potential evapotranspiration, humidity index, altitude range, and gross domestic product were important determinants of seed plant diversity. The relative contribution of temperature seasonality was the most important factor (explaining 29.9–36.2% of the variation). Climate, human disturbance, and habitat heterogeneity explained much of the seed plant richness and density variation (about 69.4–71.9%). A scale-down model explained 72% of seed plant richness variation and showed that the center of seed plant species diversity was mainly located in the southeast area of China in the Qing-Tibet Plateau, Yun-Gui Plateau, Hengduan Mountain region, middle of the Sichuan Basins, Taiwan island, and Hainan island. This study improves our understanding of biodiversity hotspot regions and is a useful tool for biodiversity conservation policy and nature reserve management in China.


Environmental and Experimental Botany | 2011

Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China

Changcheng Liu; Yuguo Liu; Ke Guo; Da-Yong Fan; Guoqing Li; Yuanrun Zheng; Li-Fei Yu; Rui Yang


Forests | 2014

Mapping the Global Potential Geographical Distribution of Black Locust (Robinia Pseudoacacia L.) Using Herbarium Data and a Maximum Entropy Model

Guoqing Li; Guanghua Xu; Ke Guo; Sheng Du


Forest Ecology and Management | 2010

Effect of prevailing monsoons on the distribution of beeches in continental East Asia

Ke Guo; Marinus J. A. Werger

Collaboration


Dive into the Ke Guo's collaboration.

Top Co-Authors

Avatar

Changcheng Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yuguo Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sheng Du

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shijie Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xianguo Qiao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Haiwei Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dongjie Hou

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge