Kebba Sabally
McGill University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kebba Sabally.
Molecules | 2011
Ashutosh Singh; Kebba Sabally; Stan Kubow; Danielle J. Donnelly; Yvan Gariepy; Valérie Orsat; G.S.V. Raghavan
A response surface method was used to optimize the microwave-assisted extraction parameters such as extraction time (t) (min), solvent (methanol) concentration (S) (v/v) and microwave power level (MP) for extraction of antioxidants from potato peels. Max. total phenolics content of 3.94 mg g−1 dry weight (dw) was obtained at S of 67.33%, t of 15 min and a MP of 14.67%. For ascorbic acid (1.44 mg g−1 dw), caffeic acid (1.33 mg g−1 dw), ferulic acid (0.50 mg g−1 dw) max contents were obtained at S of 100%, t of 15 min, and MP of 10%, while the max chlorogenic acid content (1.35 mg g−1 dw) was obtained at S of 100%, t of 5 min, and MP of 10%. The radical scavenging activity of the extract was evaluated by using the DPPH assay and optimum antioxidant activity was obtained at S of 100%, t of 5 min, and MP of 10%.
Biocatalysis and Biotransformation | 2007
Kebba Sabally; Salwa Karboune; Richard St-Louis; Selim Kermasha
The enzymatic synthesis of phenolic lipids by lipase-catalyzed transesterification of dihydrocaffeic acid (DHCA) with fish liver oil was investigated in a selected organic solvent medium. These synthesized phenolic lipids have potential use as nutraceutical products. Using a molar ratio of 1:8 DHCA to fish liver oil in hexane:2-butanone mixtures of 75:25 and 85:15 (v/v), the lipase-catalyzed reaction resulted in maximum conversion of 55.8 and 65.4%, respectively. The maximum conversion of phenolic monoacylglycerols in hexane:2-butanone mixture of 75:25 and 85:15 (v/v) was 40.3 and 37.7%, respectively; using the same solvent mixtures, the conversions of the phenolic diacylglycerol were 15.8 and 36.8%, respectively. Hexane:2-butanone mixture of 75:25 (v/v) was, therefore, the best organic solvent mixture for the production of phenolic monoacylglycerols, while that of 85:15 (v/v) was best for the production of phenolic diacylglycerols. The phenolic lipids produced from the fish liver oil and DHCA demonstrated antioxidant property as indicated by its free radical scavenging capacity.
Applied Biochemistry and Biotechnology | 2005
Kebba Sabally; Salwa Karboune; Faustinus K. Yeboah; Selim Kermasha
Lipase-catalyzed esterification of selected phenolic acids with linolenyl alcohols was investigated in selected organic solvent media. The enzyme activity for the esterification of dihydrocaffeic acid with linolenyl alcohol in solvent mixtures of hexane/2-butanone of 75∶25 (v/v) and 65∶35 (v/v) was 0.88 and 0.47 μmol of esterified dihydrocaffeic acid/(g of solid enzyme·min), respectively, with a corresponding esterification yield of 76 and 58%, respectively. However, the esterification of ferulic acid with linolenyl alcohol in the reaction medium of hexane/2-butanone of 65∶35 (v/v) resulted in a low yield (16%). Using the reaction medium of hexane/2-butanone of 75∶25 (v/v), an increase in linolenyl alcohol concentration with a concomitant use of a constant amount of dihydrocaffeic acid resulted in an increase in esterification yield. The highest esterification yield of 99% was obtained with a ratio of dihydrocaffeic acid to linolenyl alcohol of 1∶8 after 7 d of reaction. Biosynthesis of the end product, linolenyl dihydrocaffeate, was confirmed by electrospray ionization mass spectroscopy structural analysis; the esterproduct demonstrated an antiradical activity close to that of α-tocopherol.
Biocatalysis and Biotransformation | 2005
Kebba Sabally; Salwa Karboune; Faustinus K. Yebaoh; Selim Kermasha
The enzymatic esterification of dihydrocaffeic acid with linoleyl alcohol, using immobilized lipases (Lipozyme IM 20 and Novozym 435), was investigated in selected organic solvent media. Novozym 435 was found to be more efficient for catalyzing the esterification reaction. The highest enzymatic activity of 0.89 μmol esterified linoleyl alcohol/g solid enzyme/min was obtained in a hexane/2-butanone mixture of 75:25 (v/v), with an esterification yield of 75%; however, an increase in the 2-butanone proportion in the mixture up to 50% (v/v) resulted in a decrease in enzymatic activity and esterification yield to 0.38 μmol esterified linoleyl alcohol/g solid enzyme/min and 40%, respectively. The maximum esterification yield of 99.3% was obtained with a dihydrocaffeic acid to linoleyl alcohol ratio of 1:8. The electrospray ionization-mass spectroscopic structural analysis of the end products confirmed the biosynthesis of dihydrocaffeic acid ester of linoleyl alcohol, which demonstrated an anti-radical activity using 2,2-diphenyl-1-picrylhydrazyl as a radical model.
Food Chemistry | 2016
Shima Sadeghi Ekbatan; Lekha Sleno; Kebba Sabally; Joelle Khairallah; Behnam Azadi; Laetitia Rodes; Satya Prakash; Danielle J. Donnelly; Stan Kubow
A multi-reactor gastrointestinal model was used to digest a mixture of pure polyphenol compounds, including non-flavonoid phenolic acids (chlorogenic acid, caffeic acid, ferulic acid) and a flavonoid (rutin) to identify phenolic metabolites and short chain fatty acids (SCFAs) and compare relative antioxidant capacities following a 24h digestion. Biotransformation of these polyphenols occurred in the colonic compartments generating phenylpropionic, benzoic, phenylacetic and cinnamic acids. Total SCFAs increased in all colonic vessels with a rise in the proportion of propionic to acetic acid. Antioxidant capacity increased significantly in all compartments, but first in the stomach, small intestine and ascending colon. After 24h, the colonic vessels without parent polyphenols, but containing new metabolites, had antioxidant capacities similar to the stomach and small intestine, containing parent compounds. Biotransformation of pure polyphenols resulted in different phenolic metabolite and SCFAs profiles in each colonic segment, with important health implications for these colonic compartments.
Food Chemistry | 2016
Stan Kubow; Michèle M. Iskandar; Kebba Sabally; Behnam Azadi; Shima Sadeghi Ekbatan; Premkumari Kumarathasan; Dharani Das; Satya Prakash; Gabriela Burgos; Thomas zum Felde
Cooked, milled purple-fleshed sweet potato (PFSP) accessions, PM09.812 and PM09.960, underwent digestion in a dynamic human gastrointestinal (GI) model that simulates gut digestive conditions to study the bioaccessibility and biotransformation of anthocyanins. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry showed accession-dependent variations in anthocyanin release and degradation. After 24h, more anthocyanin species were detected in the small intestinal vessel relative to other vessels for accession PM09.960 whereas more species appeared in the ascending colonic vessel for accession PM09.812. The ferric reducing antioxidant power was increased in the small intestinal vessel for PM09.960 and in the ascending colonic vessel for accession PM09.812, corresponding to the appearance of a majority of anthocyanins for each accession. These results show that intestinal and colonic microbial digestion of PFSP leads to an accession-dependent pattern for anthocyanin bioaccessibility and degradation.
Molecular Nutrition & Food Research | 2014
Stan Kubow; Luc Hobson; Michèle M. Iskandar; Kebba Sabally; Danielle J. Donnelly; Luis B. Agellon
Both sexes of mice were fed a high fat diet (HFD) for 10 weeks without and with polyphenolic-rich potato extracts (PRPE) of cultivars Onaway and Russet Burbank. PRPE attenuated weight gain in male and female mice by as much as 63.2%, which was associated mostly with a reduction in adiposity. Mice receiving PRPE showed enhanced capacity for blood glucose clearance. Sex differences regarding the impact of HFD and PRPE on plasma levels of insulin, ghrelin, leptin, gastric inhibitory peptide, and resistin were noted. PRPE may serve as part of a preventative dietary strategy against the development of obesity and type 2 diabetes.
Frontiers in Plant Science | 2015
Mejda Mnasri; Rim Ghabriche; Emna Fourati; Hanen Zaier; Kebba Sabally; Suzelle Barrington; Stanley Lutts; Chedly Abdelly; Tahar Ghnaya
The implication of organic acids in Cd and Ni translocation was studied in the halophyte species Sesuvium portulacastrum. Citric, fumaric, malic, and ascorbic acids were separated and quantified by HPLC technique in shoots, roots and xylem saps of plants grown on nutrient solutions added with 50 μM Cd, 100 μM Ni and the combination of 50 μM Cd + 100 μM Ni. Results showed that Cd had no significant impact on biomass production while Ni and the combination of both metals drastically affected plant development. Cadmium and Ni concentrations in tissues and xylem sap were higher in plants subjected to individual metal application than those subjected to the combined effect of Cd and Ni suggesting a possible competition between these metals for absorption. Both metals applied separately or in combination induced an increase in citrate concentration in shoots and xylem sap but a decrease of this concentration in the roots. However, a minor relationship was observed between metal application and fumaric, malic, and ascorbic acids. Both observations suggest the implication of citric acid in Cd, Ni translocation and shoot accumulation in S. portulacastrum. The relatively high accumulation of citric acid in xylem sap and shoot of S. portulacastrum could be involved in metal chelation and thus contributes to heavy metal tolerance in this species.
Foods | 2015
Michèle M. Iskandar; Larry C. Lands; Kebba Sabally; Behnam Azadi; Brian Meehan; Nadir Mawji; Cameron D. Skinner; Stan Kubow
Whey proteins have well-established antioxidant and anti-inflammatory bioactivities. High hydrostatic pressure processing of whey protein isolates increases their in vitro digestibility resulting in enhanced antioxidant and anti-inflammatory effects. This study compared the effects of different digestion protocols on the digestibility of pressurized (pWPI) and native (nWPI) whey protein isolates and the antioxidant and anti-inflammatory properties of the hydrolysates. The pepsin-pancreatin digestion protocol was modified to better simulate human digestion by adjusting temperature and pH conditions, incubation times, enzymes utilized, enzyme-to-substrate ratio and ultrafiltration membrane molecular weight cut-off. pWPI showed a significantly greater proteolysis rate and rate of peptide appearance regardless of digestion protocol. Both digestion methods generated a greater relative abundance of eluting peptides and the appearance of new peptide peaks in association with pWPI digestion in comparison to nWPI hydrolysates. Hydrolysates of pWPI from both digestion conditions showed enhanced ferric-reducing antioxidant power relative to nWPI hydrolysates. Likewise, pWPI hydrolysates from both digestion protocols showed similar enhanced antioxidant and anti-inflammatory effects in a respiratory epithelial cell line as compared to nWPI hydrolysates. These findings indicate that regardless of considerable variations of in vitro digestion protocols, pressurization of WPI leads to more efficient digestion that improves its antioxidant and anti-inflammatory properties.
Nutrients | 2017
Stan Kubow; Michèle M. Iskandar; Emiliano Melgar-Bermudez; Lekha Sleno; Kebba Sabally; Behnam Azadi; Emily How; Satya Prakash; Gabriela Burgos; Thomas zum Felde
A dynamic human gastrointestinal (GI) model was used to digest cooked tubers from purple-fleshed Amachi and Leona potato cultivars to study anthocyanin biotransformation in the stomach, small intestine and colonic vessels. Colonic Caco-2 cancer cells and non-tumorigenic colonic CCD-112CoN cells were tested for cytotoxicity and cell viability after 24 h exposure to colonic fecal water (FW) digests (0%, 10%, 25%, 75% and 100% FW in culture media). After 24 h digestion, liquid chromatography-mass spectrometry identified 36 and 15 anthocyanin species throughout the GI vessels for Amachi and Leona, respectively. The total anthocyanin concentration was over thirty-fold higher in Amachi compared to Leona digests but seven-fold higher anthocyanin concentrations were noted for Leona versus Amachi in descending colon digests. Leona FW showed greater potency to induce cytotoxicity and decrease viability of Caco-2 cells than observed with FW from Amachi. Amachi FW at 100% caused cytotoxicity in non-tumorigenic cells while FW from Leona showed no effect. The present findings indicate major variations in the pattern of anthocyanin breakdown and release during digestion of purple-fleshed cultivars. The differing microbial anthocyanin metabolite profiles in colonic vessels between cultivars could play a significant role in the impact of FW toxicity on tumor and non-tumorigenic cells.