Kedar Hippalgaonkar
Agency for Science, Technology and Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kedar Hippalgaonkar.
Nano Letters | 2012
Jongwoo Lim; Kedar Hippalgaonkar; Sean C. Andrews; Arun Majumdar; Peidong Yang
Although it has been qualitatively demonstrated that surface roughness can reduce the thermal conductivity of crystalline Si nanowires (SiNWs), the underlying reasons remain unknown and warrant quantitative studies and analysis. In this work, vapor-liquid-solid (VLS) grown SiNWs were controllably roughened and then thoroughly characterized with transmission electron microscopy to obtain detailed surface profiles. Once the roughness information (root-mean-square, σ, correlation length, L, and power spectra) was extracted from the surface profile of a specific SiNW, the thermal conductivity of the same SiNW was measured. The thermal conductivity correlated well with the power spectra of surface roughness, which varies as a power law in the 1-100 nm length scale range. These results suggest a new realm of phonon scattering from rough interfaces, which restricts phonon transport below the Casimir limit. Insights gained from this study can help develop a more concrete theoretical understanding of phonon-surface roughness interactions as well as aid the design of next generation thermoelectric devices.
Nature Communications | 2015
Sangwook Lee; Fan Yang; Joonki Suh; Sijie Yang; Yeonbae Lee; Guo Li; Hwan Sung Choe; Aslihan Suslu; Yabin Chen; Changhyun Ko; Joonsuk Park; Kai Liu; Jingbo Li; Kedar Hippalgaonkar; Jeffrey J. Urban; Sefaattin Tongay; J. Wu
Black phosphorus attracts enormous attention as a promising layered material for electronic, optoelectronic and thermoelectric applications. Here we report large anisotropy in in-plane thermal conductivity of single-crystal black phosphorus nanoribbons along the zigzag and armchair lattice directions at variable temperatures. Thermal conductivity measurements were carried out under the condition of steady-state longitudinal heat flow using suspended-pad micro-devices. We discovered increasing thermal conductivity anisotropy, up to a factor of two, with temperatures above 100 K. A size effect in thermal conductivity was also observed in which thinner nanoribbons show lower thermal conductivity. Analysed with the relaxation time approximation model using phonon dispersions obtained based on density function perturbation theory, the high anisotropy is attributed mainly to direction-dependent phonon dispersion and partially to phonon–phonon scattering. Our results revealing the intrinsic, orientation-dependent thermal conductivity of black phosphorus are useful for designing devices, as well as understanding fundamental physical properties of layered materials.
Nano Letters | 2010
Kedar Hippalgaonkar; Baoling Huang; Renkun Chen; Karma Sawyer; Peter Ercius; Arun Majumdar
Phonons in low-dimensional structures with feature sizes on the order of the phonon wavelength may be coherently scattered by the boundary. This may give rise to a new regime of heat conduction, which can impact thermal energy transport and conversion. Traditional methods used to investigate phonon transport in one-dimensional structures suffer from uncertainty due to contact resistance, defects, and limited control over sample dimensions. We have developed a new batch-fabrication technique for suspended microdevices with integrated silicon nanowires from silicon-on-insulator (SOI) wafers. The nanowires are defect-free and have extremely high aspect ratios (length/critical dimension >2000). The nanowire dimensions (length and critical dimension) can be precisely controlled during fabrication. With these novel devices, phonon transport in silicon nanowires is systematically investigated. The room temperature thermal conductivity of nanowires with critical width around 80 nm is about 20 W/(m K) and much lower than that in smooth VLS wires. This suggests that the surface morphology of the structures has a significant effect on the thermal conductivity, but this phenomenon is not currently understood. This fabrication technique can also be used for thermal transport investigation in a wide-range of low-dimensional structures.
Journal of the American Chemical Society | 2013
Sangwook Lee; Chun Cheng; Hua Guo; Kedar Hippalgaonkar; Kevin K. W. Wang; Joonki Suh; Kai Liu; J. Wu
The abrupt first-order metal-insulator phase transition in single-crystal vanadium dioxide nanowires (NWs) is engineered to be a gradual transition by axially grading the doping level of tungsten. We also demonstrate the potential of these NWs for thermal sensing and actuation applications. At room temperature, the graded-doped NWs show metal phase on the tips and insulator phase near the center of the NW, and the metal phase grows progressively toward the center when the temperature rises. As such, each individual NW acts as a microthermometer that can be simply read out with an optical microscope. The NW resistance decreases gradually with the temperature rise, eventually reaching 2 orders of magnitude drop, in stark contrast to the abrupt resistance change in undoped VO2 wires. This novel phase transition yields an extremely high temperature coefficient of resistivity ~10%/K, simultaneously with a very low resistivity down to 0.001 Ω·cm, making these NWs promising infrared sensing materials for uncooled microbolometers. Lastly, they form bimorph thermal actuators that bend with an unusually high curvature, ~900 m(-1)·K(-1) over a wide temperature range (35-80 °C), significantly broadening the response temperature range of previous VO2 bimorph actuators. Given that the phase transition responds to a diverse range of stimuli-heat, electric current, strain, focused light, and electric field-the graded-doped NWs may find wide applications in thermo-opto-electro-mechanical sensing and energy conversion.
ACS Nano | 2011
Jong Wook Roh; Kedar Hippalgaonkar; Jin Hee Ham; Renkun Chen; Ming Zhi Li; Peter Ercius; Arun Majumdar; Woochul Kim; Wooyoung Lee
The thermal conductivity of individual single-crystalline Bi nanowires grown by the on-film formation of nanowires (ON-OFF) has been investigated. We observed that the thermal conductivity of single-crystalline Bi nanowires is highly anisotropic. Thermal conductivity of nanowires (diameter ∼100 nm) in the off-axis [102] and [110] directions exhibits a difference of ∼7.0 W/m·K. The thermal conductivity in both growth directions is diameter-dependent, which indicates that thermal transport through the individual Bi nanowires is limited by boundary scattering of both electrons and phonons. This huge anisotropy in thermal conductivities of Bi nanowires suggests the importance of direction-dependent characterization of charge, thermal transport, and thermoelectric properties of Bi nanowires.
Small | 2017
Yu Zhang; Yun Zheng; Kun Rui; Huey Hoon Hng; Kedar Hippalgaonkar; Jianwei Xu; Wenping Sun; Jixin Zhu; Qingyu Yan; Wei Huang
Recent progress in the currently available methods of producing black phosphorus bulk and phosphorene are presented. The effective passivation approaches toward improving the air stability of phosphorene are also discussed. Furthermore, the research efforts on the phosphorene and phosphorene-based materials for potential applications in lithium ion batteries, sodium ion batteries, and thermoelectric devices are summarized and highlighted. Finally, the outlook including challenges and opportunities in these research fields are discussed.
Physical Review B | 2017
Kedar Hippalgaonkar; Ying Wang; Yu Ye; Diana Y. Qiu; Hanyu Zhu; Yuan Wang; Joel E. Moore; Steven G. Louie; Xiang Zhang
The quest for high-efficiency heat-to-electricity conversion has been one of the major driving forces towards renewable energy production for the future. Efficient thermoelectric devices require careful material engineering such as high voltage generation from a temperature gradient, and high electrical conductivity while maintaining a low thermal conductivity. Significant progress in the thermoelectric performance of materials has been made by exploring the ultralow thermal conductivity at high temperature, reducing the thermal conductivity by nanostructuring, resonant doping and energy-dependent scattering. For a given thermal conductivity and temperature, thermoelectric powerfactor is determined by the electronic structure of the material. Low dimensionality (1D and 2D) opens new routes to high powerfactor due to their unique density of states of confined electrons and holes. Emerging 2D transition metal dichalcogenide (TMDC) semiconductors represent a new class of thermoelectric materials not only from their discretized density of states, but especially due to their large effective masses and high carrier mobilities, different from gapless semi-metallic graphene. Here we report a measured powerfactor of
Scientific Reports | 2017
Yi Liu; Zhun-Yong Ong; Jing Wu; Yunshan Zhao; Kenji Watanabe; Takashi Taniguchi; D. Z. Chi; Gang Zhang; John T. L. Thong; Cheng-Wei Qiu; Kedar Hippalgaonkar
MoS_2
Joule | 2018
Juan Pablo Correa-Baena; Kedar Hippalgaonkar; Jeroen van Duren; Shaffiq Jaffer; Vijay Chandrasekhar; Vladan Stevanović; Cyrus Wadia; Supratik Guha; Tonio Buonassisi
as large as
Review of Scientific Instruments | 2017
Pawan Kumar; D. V. Maheswar Repaka; Kedar Hippalgaonkar
8.5 mWm^{-1}K^{-2}