Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keely G. McDonald is active.

Publication


Featured researches published by Keely G. McDonald.


Nature | 2012

Goblet cells deliver luminal antigen to CD103 + dendritic cells in the small intestine

Jeremiah R. McDole; Leroy W. Wheeler; Keely G. McDonald; Baomei Wang; Vjollca Konjufca; Kathryn Knoop; Rodney D. Newberry; Mark J. Miller

The intestinal immune system is exposed to a mixture of foreign antigens from diet, commensal flora and potential pathogens. Understanding how pathogen-specific immunity is elicited while avoiding inappropriate responses to the background of innocuous antigens is essential for understanding and treating intestinal infections and inflammatory diseases. The ingestion of protein antigen can induce oral tolerance, which is mediated in part by a subset of intestinal dendritic cells (DCs) that promote the development of regulatory T cells. The lamina propria (LP) underlies the expansive single-cell absorptive villous epithelium and contains a large population of DCs (CD11c+ CD11b+ MHCII+ cells) comprised of two predominant subsets: CD103+ CX3CR1− DCs, which promote IgA production, imprint gut homing on lymphocytes and induce the development of regulatory T cells, and CD103− CX3CR1+ DCs (with features of macrophages), which promote tumour necrosis factor-α (TNF-α) production, colitis, and the development of TH17 T cells. However, the mechanisms by which different intestinal LP-DC subsets capture luminal antigens in vivo remains largely unexplored. Using a minimally disruptive in vivo imaging approach we show that in the steady state, small intestine goblet cells (GCs) function as passages delivering low molecular weight soluble antigens from the intestinal lumen to underlying CD103+ LP-DCs. The preferential delivery of antigens to DCs with tolerogenic properties implies a key role for this GC function in intestinal immune homeostasis.


Journal of Immunology | 2003

Isolated Lymphoid Follicle Formation Is Inducible and Dependent Upon Lymphotoxin-Sufficient B Lymphocytes, Lymphotoxin β Receptor, and TNF Receptor I Function

Robin G. Lorenz; David D. Chaplin; Keely G. McDonald; Jacquelyn S. McDonough; Rodney D. Newberry

The gastrointestinal mucosa contains a complex network of lymphoid compartments that have evolved to efficiently protect the host from invading pathogens. Recently, an additional lymphoid structure resembling Peyer’s patches (PP) in composition and architecture has been identified in the murine small intestine, the isolated lymphoid follicle (ILF). In this study we examine the nature and factors required for ILF formation. We observed a spectrum of structures fitting the previous descriptions of ILFs, ranging from clusters of B220+ cells (which we have termed immature ILFs) to well-organized lymphoid nodules (which we have termed mature ILFs). Here we demonstrate that that similar to PP formation, ILF formation requires lymphotoxin (LT)- and LTβ receptor-dependent events. However unlike PP formation, the LT- and LTβ receptor-dependent events required for ILF formation can occur in adulthood and require LT-sufficient B lymphocytes. We demonstrate that mature ILF formation occurs in response to lumenal stimuli, including normal bacterial flora, and requires TNF receptor I function. These findings suggest that ILFs are organized intestinal lymphoid structures whose formation can be induced and whose mass can be expanded in response to mucosal challenges.


Nature Immunology | 2013

Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens

Ansuman T. Satpathy; Carlos G. Briseño; Jacob S Lee; Dennis Ng; Nicholas A. Manieri; Wumesh Kc; Xiaodi Wu; Stephanie R Thomas; Wan-Ling Lee; Mustafa Turkoz; Keely G. McDonald; Matthew M. Meredith; Christina Song; Cynthia J. Guidos; Rodney D. Newberry; Wenjun Ouyang; Theresa L. Murphy; Thaddeus S. Stappenbeck; Jennifer L. Gommerman; Michel C. Nussenzweig; Marco Colonna; Raphael Kopan; Kenneth M. Murphy

Defense against attaching-and-effacing bacteria requires the sequential generation of interleukin 23 (IL-23) and IL-22 to induce protective mucosal responses. Although CD4+ and NKp46+ innate lymphoid cells (ILCs) are the critical source of IL-22 during infection, the precise source of IL-23 is unclear. We used genetic techniques to deplete mice of specific subsets of classical dendritic cells (cDCs) and analyzed immunity to the attaching-and-effacing pathogen Citrobacter rodentium. We found that the signaling receptor Notch2 controlled the terminal stage of cDC differentiation. Notch2-dependent intestinal CD11b+ cDCs were an obligate source of IL-23 required for survival after infection with C. rodentium, but CD103+ cDCs dependent on the transcription factor Batf3 were not. Our results demonstrate a nonredundant function for CD11b+ cDCs in the response to pathogens in vivo.


Journal of Immunology | 2005

Adaptive Immune Responses Are Dispensable for Isolated Lymphoid Follicle Formation: Antigen-Naive, Lymphotoxin-Sufficient B Lymphocytes Drive the Formation of Mature Isolated Lymphoid Follicles

Keely G. McDonald; Jacquelyn S. McDonough; Rodney D. Newberry

Isolated lymphoid follicles (ILFs) are recently appreciated members of the mucosal immune system. The architecture, composition, and inducible nature of these structures indicates that these structures are tertiary lymphoid structures. The process leading to the formation of tertiary lymphoid structures, lymphoid neogenesis, has been observed in a number of inflammatory and autoimmune conditions. Given this association, there is considerable interest in identifying the factors promoting lymphoid neogenesis, and understanding the steps in this process. Using murine ILF formation as a model, we have examined the roles of different cellular sources of lymphotoxin (LT) and the adaptive immune response in lymphoid neogenesis. In this study, we report that, although other cellular sources of LT may supplant B lymphocytes in the formation of immature ILFs (loosely organized clusters of B lymphocytes), LT-sufficient B lymphocytes are required for the progression of immature ILFs to mature ILFs (organized lymphoid aggregates with a follicle-associated epithelium). ILF formation occurs in the absence of T lymphocytes and Ag-specific B lymphocyte responses, and ILF B lymphocytes express elevated levels of LT in the absence of antigenic stimulation. Consistent with a role for chemokines inducing LT expression in Ag-naive B lymphocytes, and a chemokine-driven positive-feedback loop driving mature ILF formation, mature ILFs express elevated levels of B lymphocyte chemoattractant in the absence of Ag-specific B lymphocyte stimulation. These observations indicate that ILFs contain Ag-naive lymphocytes, and suggest that events occurring within ILFs shape subsequent immune responses mediated by these lymphocytes.


Mucosal Immunology | 2015

Microbial Sensing by Goblet Cells Controls Immune Surveillance of Luminal Antigens in the Colon

Kathryn Knoop; Keely G. McDonald; Stephanie McCrate; Jeremiah R. McDole; Rodney D. Newberry

The delivery of luminal substances across the intestinal epithelium to the immune system is a critical event in immune surveillance, resulting in tolerance to dietary antigens and immunity to pathogens. How this process is regulated is largely unknown. Recently goblet cell-associated antigen passages (GAPs) were identified as a pathway delivering luminal antigens to underlying lamina propria (LP) dendritic cells in the steady state. Here, we demonstrate that goblet cells (GCs) form GAPs in response to acetylcholine (ACh) acting on muscarinic ACh receptor 4. GAP formation in the small intestine was regulated at the level of ACh production, as GCs rapidly formed GAPs in response to ACh analogs. In contrast, colonic GAP formation was regulated at the level of GC responsiveness to ACh. Myd88-dependent microbial sensing by colonic GCs inhibited the ability of colonic GCs to respond to Ach to form GAPs and deliver luminal antigens to colonic LP-antigen-presenting cells (APCs). Disruption of GC microbial sensing in the setting of an intact gut microbiota opened colonic GAPs, and resulted in recruitment of neutrophils and APCs and production of inflammatory cytokines. Thus GC intrinsic sensing of the microbiota has a critical role regulating the exposure of the colonic immune system to luminal substances.


Journal of Immunology | 2010

Induction of IDO-1 by Immunostimulatory DNA Limits Severity of Experimental Colitis

Matthew A. Ciorba; Ellen E. Bettonville; Keely G. McDonald; Richard Metz; George C. Prendergast; Rodney D. Newberry; William F. Stenson

The chronic inflammatory bowel diseases are characterized by aberrant innate and adaptive immune responses to commensal luminal bacteria. In both human inflammatory bowel disease and in experimental models of colitis, there is an increased expression of the enzyme IDO. IDO expression has the capacity to exert antimicrobial effects and dampen adaptive immune responses. In the murine trinitrobenzene sulfonic acid model of colitis, inhibition of this enzyme leads to worsened disease severity, suggesting that IDO acts as a natural break in limiting colitis. In this investigation, we show that induction of IDO-1 by a TLR-9 agonist, immunostimulatory (ISS) DNA, critically contributes to its colitis limiting capacities. ISS DNA induces intestinal expression of IDO-1 but not the recently described paralog enzyme IDO-2. This induction occurred in both epithelial cells and in subsets of CD11c+ and CD11b+ cells of the lamina propria, which also increase after ISS-oligodeoxynucleotide. Signaling required for intestinal IDO-1 induction involves IFN-dependent pathways, as IDO-1 was not induced in STAT-1 knockout mice. Using both the trinitrobenzene sulfonic acid and dextran sodium sulfate models of colitis, we show the importance of IDO-1s induction in limiting colitis severity. The clinical parameters and histological correlates of colitis in these models were improved by administration of the TLR-9 agonist; however, when the function of IDO is inhibited, the colitis limiting effects of ISS-oligodeoxynucleotide were abrogated. These findings support the possibility that targeted induction of IDO-1 is an approach deserving further investigation as a therapeutic strategy for diseases of intestinal inflammation.


Journal of Immunology | 2002

Postgestational Lymphotoxin/Lymphotoxin β Receptor Interactions Are Essential for the Presence of Intestinal B Lymphocytes

Rodney D. Newberry; Jacquelyn S. McDonough; Keely G. McDonald; Robin G. Lorenz

Lymphotoxin (LT), a cytokine belonging to the TNF family, has established roles in the formation of secondary lymphoid structures and in the compartmentalization of T and B lymphocyte areas of the spleen. In this study, we examine the role of LT in directing the composition of intestinal lymphocytes. We report that mice deficient in LT have a normal composition of intestinal lamina propria (LP) T lymphocytes, and an absence of intestinal LP B lymphocytes. We further refine this observation to demonstrate that the interaction of LT with the LTβR is essential for the presence LP B lymphocytes. The LT/LTβR-dependent events relevant for the presence of LP B lymphocytes occur after birth, do not require the presence of Peyer’s patches, lymph nodes, or the spleen; and therefore, are distinct and independent from the previously identified roles of LT/LTβR. The LT-dependent signal relevant for the presence of LP B lymphocytes is optimally supplied by a LT-sufficient B lymphocyte, and requires a LTβR-sufficient radio-resistant, non-bone marrow-derived cell. Based upon the severity of the deficit of LP B lymphocytes we observed, these novel LT/LTβR-dependent events are of primary importance in directing the entry and residence of LP B lymphocytes.


Gut | 2016

Antibiotics promote inflammation through the translocation of native commensal colonic bacteria

Kathryn Knoop; Keely G. McDonald; Devesha Kulkarni; Rodney D. Newberry

Objective Antibiotic use is associated with an increased risk of developing multiple inflammatory disorders, which in turn are linked to alterations in the intestinal microbiota. How these alterations in the intestinal microbiota translate into an increased risk for inflammatory responses is largely unknown. Here we investigated whether and how antibiotics promote inflammation via the translocation of live native gut commensal bacteria. Design Oral antibiotics were given to wildtype and induced mutant mouse strains, and the effects on bacterial translocation, inflammatory responses and the susceptibility to colitis were evaluated. The sources of the bacteria and the pathways required for bacterial translocation were evaluated using induced mutant mouse strains, 16s rRNA sequencing to characterise the microbial communities, and in vivo and ex vivo imaging techniques. Results Oral antibiotics induced the translocation of live native commensal bacteria across the colonic epithelium, promoting inflammatory responses, and predisposing to increased disease in response to coincident injury. Bacterial translocation resulted from decreased microbial signals delivered to colonic goblet cells (GCs), was associated with the formation of colonic GC-associated antigen passages, was abolished when GCs were depleted and required CX3CR1+ dendritic cells. Bacterial translocation occurred following a single dose of most antibiotics tested, and the predisposition for increased inflammation was only associated with antibiotics inducing bacterial translocation. Conclusions These findings reveal an unexpected outcome of antibiotic therapy and suggest that bacterial translocation as a result of alterations in the intestinal microflora may provide a link between increasing antibiotic use and the increased incidence of inflammatory disorders.


American Journal of Pathology | 2010

Dendritic Cells Produce CXCL13 and Participate in the Development of Murine Small Intestine Lymphoid Tissues

Keely G. McDonald; Jacquelyn S. McDonough; Brian K. Dieckgraefe; Rodney D. Newberry

In the adult intestine, luminal microbiota induce cryptopatches to transform into isolated lymphoid follicles (ILFs), which subsequently act as sites for the generation of IgA responses. The events leading to this conversion are incompletely understood. Dendritic cells (DCs) are components of cryptopatches (CPs) and ILFs and were therefore evaluated in this process. We observed that the adult murine intestine contains clusters of DCs restricted to the CP/ILF continuum. A numerical and cell associative hierarchy in the adult intestine and a chronologic hierarchy in the neonatal intestine demonstrated that these clusters form after the coalescence of CD90+ cells to form CPs and before the influx of B220+ B lymphocytes to form ILFs. Cluster formation was dependent on lymphotoxin and the lymphotoxin beta receptor and independent of lymphocytes. The ILF DC population was distinguished from that of the lamina propria by the absence of CD4+CD11c+ cells and an increased proportion of CD11c+B220+ cells. The formation of clusters was not limited by DC numbers but was induced by luminal microbiota. Moreover, in the absence of the chemokine CXCL13, CP transformation into ILF was arrested. Furthermore, ILF DCs express CXCL13, and depletion of DCs resulted in regression of ILFs and disorganization of CPs. These results reveal DC participation in ILF transformation and maintenance and suggest that in part this may be due to CXCL13 production by these cells.


American Journal of Pathology | 2012

Epithelial Expression of the Cytosolic Retinoid Chaperone Cellular Retinol Binding Protein II Is Essential for in Vivo Imprinting of Local Gut Dendritic Cells by Lumenal Retinoids

Keely G. McDonald; Matthew R. Leach; Kaitlin W.M. Brooke; Caihong Wang; Leroy W. Wheeler; Elyse K. Hanly; Christopher W. Rowley; Marc S. Levin; Michael Wagner; Ellen Li; Rodney D. Newberry

Dendritic cells (DCs) use all-trans retinoic acid (ATRA) to promote characteristic intestinal responses, including Foxp3(+) Treg conversion, lymphocyte gut homing molecule expression, and IgA production. How this ability to generate ATRA is conferred to DCs in vivo remains largely unstudied. Here, we observed that among DCs, retinaldehyde dehydrogenase (ALDH1), which catalyzes the conversion of retinal to ATRA, was preferentially expressed by small intestine CD103(+) lamina propria (LP) DCs. Retinoids induced LP CD103(+) DCs to generate ATRA via ALDH1 activity. Either biliary or dietary retinoids were required to confer ALDH activity to LP DCs in vivo. Cellular retinol-binding protein II (CRBPII), a cytosolic retinoid chaperone that directs enterocyte retinol and retinal metabolism but is redundant to maintain serum retinol, was required to confer ALDH activity to CD103(+) LP DCs. CRBPII expression was restricted to small intestine epithelial cells, and ALDH activity in CRBPII(-/-) DCs was restored by transfer to a wild-type recipient. CD103(+) LP DCs from CRBPII(-/-) mice had a decreased capacity to promote IgA production. Moreover, CD103(+) DCs preferentially associated with the small intestine epithelium and LP CD103(+) DC ALDH activity, and the ability to promote IgA production was reduced in mice with impaired DC-epithelia associations. These findings demonstrate in vivo roles for the expression of epithelial CRBPII and lumenal retinoids to imprint local gut DCs with an intestinal phenotype.

Collaboration


Dive into the Keely G. McDonald's collaboration.

Top Co-Authors

Avatar

Rodney D. Newberry

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Kathryn Knoop

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Caihong Wang

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Devesha Kulkarni

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Mark J. Miller

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jacquelyn S. McDonough

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Leroy W. Wheeler

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jenny K. Gustafsson

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jeremiah R. McDole

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Marco Colonna

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge