Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keem Siah Yap is active.

Publication


Featured researches published by Keem Siah Yap.


IEEE Transactions on Power Delivery | 2010

Nontechnical Loss Detection for Metered Customers in Power Utility Using Support Vector Machines

Jawad Nagi; Keem Siah Yap; S. K. Tiong; Syed Khaleel Ahmed; Malik Mohamad

Electricity consumer dishonesty is a problem faced by all power utilities. Finding efficient measurements for detecting fraudulent electricity consumption has been an active research area in recent years. This paper presents a new approach towards nontechnical loss (NTL) detection in power utilities using an artificial intelligence based technique, support vector machine (SVM). The main motivation of this study is to assist Tenaga Nasional Berhad (TNB) Sdn. Bhd. in peninsular Malaysia to reduce its NTLs in the distribution sector due to abnormalities and fraud activities, i.e., electricity theft. The fraud detection model (FDM) developed in this research study preselects suspected customers to be inspected onsite fraud based on irregularities in consumption behavior. This approach provides a method of data mining, which involves feature extraction from historical customer consumption data. This SVM based approach uses customer load profile information and additional attributes to expose abnormal behavior that is known to be highly correlated with NTL activities. The result yields customer classes which are used to shortlist potential suspects for onsite inspection based on significant behavior that emerges due to fraud activities. Model testing is performed using historical kWh consumption data for three towns within peninsular Malaysia. Feedback from TNB Distribution (TNBD) Sdn. Bhd. for onsite inspection indicates that the proposed method is more effective compared to the current actions taken by them. With the implementation of this new fraud detection system TNBDs detection hitrate will increase from 3% to 60%.


ieee region 10 conference | 2008

Detection of abnormalities and electricity theft using genetic Support Vector Machines

Jawad Nagi; Keem Siah Yap; S. K. Tiong; Syed Khaleel Ahmed; A. M. Mohammad

Efficient methods for detecting electricity fraud has been an active research area in recent years. This paper presents a hybrid approach towards non-technical loss (NTL) analysis for electric utilities using genetic algorithm (GA) and support vector machine (SVM). The main motivation of this study is to assist Tenaga Nasional Berhad (TNB) in Malaysia to reduce its NTLs in the distribution sector. This hybrid GA-SVM model preselects suspected customers to be inspected onsite for fraud based on abnormal consumption behavior. The proposed approach uses customer load profile information to expose abnormal behavior that is known to be highly correlated with NTL activities. GA provides an increased convergence and globally optimized SVM hyper-parameters using a combination of random and prepopulated genomes. The result of the fraud detection model yields classified classes that are used to shortlist potential fraud suspects for onsite inspection. Simulation results prove the proposed method is more effective compared to the current actions taken by TNB in order to reduce NTL activities.


ieee international power and energy conference | 2008

Non-Technical Loss analysis for detection of electricity theft using support vector machines

Jawad Nagi; A. M. Mohammad; Keem Siah Yap; S. K. Tiong; Syed Khaleel Ahmed

Electricity consumer dishonesty is a problem faced by all power utilities. Finding efficient measurements for detecting fraudulent electricity consumption has been an active research area in recent years. This paper presents a new approach towards Non-Technical Loss (NTL) analysis for electric utilities using a novel intelligence-based technique, Support Vector Machine (SVM). The main motivation of this study is to assist Tenaga Nasional Berhad (TNB) in Malaysia to reduce its NTLs in the distribution sector due to electricity theft. The proposed model preselects suspected customers to be inspected onsite for fraud based on irregularities and abnormal consumption behavior. This approach provides a method of data mining and involves feature extraction from historical customer consumption data. The SVM based approach uses customer load profile information to expose abnormal behavior that is known to be highly correlated with NTL activities. The result yields classification classes that are used to shortlist potential fraud suspects for onsite inspection, based on significant behavior that emerges due to irregularities in consumption. Simulation results prove the proposed method is more effective compared to the current actions taken by TNB in order to reduce NTL activities.


Applied Soft Computing | 2011

A computational intelligence scheme for the prediction of the daily peak load

Jawad Nagi; Keem Siah Yap; Farrukh Nagi; S. K. Tiong; Syed Khaleel Ahmed

Forecasting of future electricity demand is very important for decision making in power system operation and planning. In recent years, due to privatization and deregulation of the power industry, accurate electricity forecasting has become an important research area for efficient electricity production. This paper presents a time series approach for mid-term load forecasting (MTLF) in order to predict the daily peak load for the next month. The proposed method employs a computational intelligence scheme based on the self-organizing map (SOM) and support vector machine (SVM). According to the similarity degree of the time series load data, SOM is used as a clustering tool to cluster the training data into two subsets, using the Kohonen rule. As a novel machine learning technique, the support vector regression (SVR) is used to fit the testing data based on the clustered subsets, for predicting the daily peak load. Our proposed SOM-SVR load forecasting model is evaluated in MATLAB on the electricity load dataset provided by the Eastern Slovakian Electricity Corporation, which was used in the 2001 European Network on Intelligent Technologies (EUNITE) load forecasting competition. Power load data obtained from (i) Tenaga Nasional Berhad (TNB) for peninsular Malaysia and (ii) PJM for the eastern interconnection grid of the United States of America is used to benchmark the performance of our proposed model. Experimental results obtained indicate that our proposed SOM-SVR technique gives significantly good prediction accuracy for MTLF compared to previously researched findings using the EUNITE, Malaysian and PJM electricity load datasets.


IEEE Transactions on Power Delivery | 2011

Improving SVM-Based Nontechnical Loss Detection in Power Utility Using the Fuzzy Inference System

Jawad Nagi; Keem Siah Yap; S. K. Tiong; Syed Khaleel Ahmed; Farrukh Nagi

This letter extends previous research work in modeling a nontechnical loss (NTL) framework for the detection of fraud and electricity theft in power distribution utilities. Previous work was carried out by using a support vector machine (SVM)-based NTL detection framework resulting in a detection hitrate of 60%. This letter presents the inclusion of human knowledge and expertise into the SVM-based fraud detection model (FDM) with the introduction of a fuzzy inference system (FIS), in the form of fuzzy IF-THEN rules. The FIS acts as a postprocessing scheme for short-listing customer suspects with higher probabilities of fraud activities. With the implementation of this improved SVM-FIS computational intelligence FDM, Tenaga Nasional Berhad Distributions detection hitrate has increased from 60% to 72%, thus proving to be cost effective.


IEEE Transactions on Neural Networks | 2008

A Hybrid ART-GRNN Online Learning Neural Network With a

Keem Siah Yap; Chee Peng Lim; Izham Zainal Abidi

In this brief, a new neural network model called generalized adaptive resonance theory (GART) is introduced. GART is a hybrid model that comprises a modified Gaussian adaptive resonance theory (MGA) and the generalized regression neural network (GRNN). It is an enhanced version of the GRNN, which preserves the online learning properties of adaptive resonance theory (ART). A series of empirical studies to assess the effectiveness of GART in classification, regression, and time series prediction tasks is conducted. The results demonstrate that GART is able to produce good performances as compared with those of other methods, including the online sequential extreme learning machine (OSELM) and sequential learning radial basis function (RBF) neural network models.


IEEE Transactions on Neural Networks | 2011

\varepsilon

Keem Siah Yap; Chee Peng Lim; Mau Teng Au

Generalized adaptive resonance theory (GART) is a neural network model that is capable of online learning and is effective in tackling pattern classification tasks. In this paper, we propose an improved GART model (IGART), and demonstrate its applicability to power systems. IGART enhances the dynamics of GART in several aspects, which include the use of the Laplacian likelihood function, a new vigilance function, a new match-tracking mechanism, an ordering algorithm for determining the sequence of training data, and a rule extraction capability to elicit if-then rules from the network. To assess the effectiveness of IGART and to compare its performances with those from other methods, three datasets that are related to power systems are employed. The experimental results demonstrate the usefulness of IGART with the rule extraction capability in undertaking classification problems in power systems engineering.


student conference on research and development | 2010

-Insensitive Loss Function

Jawad Nagi; Keem Siah Yap; Farrukh Nagi; S. K. Tiong; S. P. Koh; Syed Khaleel Ahmed

Electricity consumer dishonesty is a problem faced by all power utilities. Finding efficient measurements for detecting fraudulent electricity consumption has been an active research area in recent years. This paper presents an approach towards detection of Non-technical Losses (NTLs) of Large Power Consumers (LPC) in Tenaga Nasional Berhad (TNB) Malaysia. The main motivation of this study is to assist Tenaga Nasional Berhad (TNB) Sdn. Bhd. in Malaysia to reduce its NTLs in the LPC distribution sector. Remote meters installed at premises of LPC customers transmit power consumption data including remote meter events wirelessly to TNB Metering Services Sdn. Bhd. The remote meter reading (RMR) consumption data for TNB LPC customers is recorded based on half-hourly intervals. The technique proposed in this paper correlates the half-hourly RMR consumption data with abnormal meter events. The correlated data provides information regarding consumption characteristics i.e. load profiles of LPC customers, which helps to expose abnormal consumption behavior that is known to be highly correlated with NTL activities and electricity theft. Pilot testing results obtained from TNB Distribution (TNBD) Sdn. Bhd. for onsite inspection of LPC customers in peninsular Malaysia indicate the proposed NTL detection technique is effective with a 55% detection hitrate. With the implementation of this intelligent system, NTL activities of LPC customers in TNB Malaysia will reduce significantly.


Applied Soft Computing | 2012

Improved GART Neural Network Model for Pattern Classification and Rule Extraction With Application to Power Systems

Chin Hooi Tan; Keem Siah Yap; Hwa Jen Yap

Genetic algorithm is well-known of its best heuristic search method. Fuzzy logic unveils the advantage of interpretability. Genetic fuzzy system exploits potential of optimization with ease of understanding that facilitates rules optimization. This paper presents the optimization of fourteen fuzzy rules for semi expert judgment automation of early activity based duration estimation in software project management. The goal of the optimization is to reduce linguistic terms complexity and improve estimation accuracy of the fuzzy rule set while at the same time maintaining a similar degree of interpretability. The optimized numbers of linguistic terms in fuzzy rules by 27.76% using simplistic binary encoding mechanism managed to improve accuracy by 14.29% and reduce optimization execution time by 6.95% without compromising on interpretability in addition to promote improvement of knowledge base in fuzzy rule based systems.


Neurocomputing | 2012

NTL detection of electricity theft and abnormalities for large power consumers In TNB Malaysia

Keem Siah Yap; Hwa Jen Yap

In the previous research, a Multi-Agent System based on Online Sequential Extreme Learning Machine (OSELM) neural network and Bayesian Formalism (MAS-OSELM-BF) has been introduced for solving pattern classification problems. However this model is incapable of handling regression tasks. In this article, a new OSELM-based multi-agent system with weighted average strategy (MAS-OSELM-WA) is introduced for solving data regression tasks. A MAS-OSELM-WA consists of several individual OSELM (individual agent) and the final decision (parent agent). The outputs of the individual agents are sent to the parent agent for a final decision whereby the coefficients of parent agent are computed by a gradient descent method. The effectiveness of the MAS-OSELM-WA is evaluated by an electrical load forecasting problem in Malaysia for a month with consequent national holidays (i.e., during the month of Hari Raya-Malay New Year of Malaysia). The results demonstrated that the MAS-OSELM-WA is able to produce good performance as compared with the other approaches.

Collaboration


Dive into the Keem Siah Yap's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. K. Tiong

Universiti Tenaga Nasional

View shared research outputs
Top Co-Authors

Avatar

Jawad Nagi

Dalle Molle Institute for Artificial Intelligence Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Farrukh Nagi

Universiti Tenaga Nasional

View shared research outputs
Top Co-Authors

Avatar

Shen Yuong Wong

Universiti Tenaga Nasional

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Intan Azmira Wan Abdul Razak

Universiti Teknikal Malaysia Melaka

View shared research outputs
Researchain Logo
Decentralizing Knowledge