Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keh-Ming Wu is active.

Publication


Featured researches published by Keh-Ming Wu.


Nature | 2004

DNA sequence and comparative analysis of chimpanzee chromosome 22

H. Watanabe; Asao Fujiyama; Masahira Hattori; Todd D. Taylor; Atsushi Toyoda; Yoko Kuroki; Hideki Noguchi; Alia BenKahla; Hans Lehrach; Ralf Sudbrak; Michael Kube; S. Taenzer; P. Galgoczy; Matthias Platzer; M. Scharfe; Gabriele Nordsiek; Helmut Blöcker; Ines Hellmann; Philipp Khaitovich; Svante Pääbo; Richard Reinhardt; H.-J. Zheng; Xianglin Zhang; Genfeng Zhu; B.-F. Wang; Gang Fu; Shuangxi Ren; Guoping Zhao; Zhu Chen; Yong Seok Lee

Human–chimpanzee comparative genome research is essential for narrowing down genetic changes involved in the acquisition of unique human features, such as highly developed cognitive functions, bipedalism or the use of complex language. Here, we report the high-quality DNA sequence of 33.3 megabases of chimpanzee chromosome 22. By comparing the whole sequence with the human counterpart, chromosome 21, we found that 1.44% of the chromosome consists of single-base substitutions in addition to nearly 68,000 insertions or deletions. These differences are sufficient to generate changes in most of the proteins. Indeed, 83% of the 231 coding sequences, including functionally important genes, show differences at the amino acid sequence level. Furthermore, we demonstrate different expansion of particular subfamilies of retrotransposons between the lineages, suggesting different impacts of retrotranspositions on human and chimpanzee evolution. The genomic changes after speciation and their biological consequences seem more complex than originally hypothesized.Human–chimpanzee comparative genome research is essential for narrowing down genetic changes involved in the acquisition of unique human features, such as highly developed cognitive functions, bipedalism or the use of complex language. Here, we report the high-quality DNA sequence of 33.3 megabases of chimpanzee chromosome 22. By comparing the whole sequence with the human counterpart, chromosome 21, we found that 1.44% of the chromosome consists of single-base substitutions in addition to nearly 68,000 insertions or deletions. These differences are sufficient to generate changes in most of the proteins. Indeed, 83% of the 231 coding sequences, including functionally important genes, show differences at the amino acid sequence level. Furthermore, we demonstrate different expansion of particular subfamilies of retrotransposons between the lineages, suggesting different impacts of retrotranspositions on human and chimpanzee evolution. The genomic changes after speciation and their biological consequences seem more complex than originally hypothesized.


Antimicrobial Agents and Chemotherapy | 2006

Complete Nucleotide Sequence of pK245, a 98-Kilobase Plasmid Conferring Quinolone Resistance and Extended-Spectrum-beta-Lactamase Activity in a Clinical Klebsiella pneumoniae Isolate

Ying-Tsong Chen; Hung-Yu Shu; Ling-Hui Li; Tsai-Lien Liao; Keh-Ming Wu; Yih-Ru Shiau; Jing-Jou Yan; Ih-Jen Su; Shih-Feng Tsai; Tsai-Ling Lauderdale

ABSTRACT A plasmid containing the qnrS quinolone resistance determinant and the gene encoding the SHV-2 β-lactamase has been discovered from a clinical Klebsiella pneumoniae strain isolated in Taiwan. The complete 98-kb sequence of this plasmid, designated pK245, was determined by using a whole-genome shotgun approach. Transfer of pK245 conferred low-level resistance to fluoroquinolones in electroporant Escherichia coli epi300. The sequence of the immediate region surrounding qnrS in pK245 is nearly identical (>99% identity) to those of pAH0376 from Shigella flexneri and pINF5 from Salmonella enterica serovar Infantis, the two other qnrS-carrying plasmids reported to date, indicating a potential common origin. Other genes conferring resistance to aminoglycosides (aacC2, strA, and strB), chloramphenicol (catA2), sulfonamides (sul2), tetracycline (tetD), and trimethoprim (dfrA14) were also detected in pK245. The dfrA14 gene is carried on a class I integron. Several features of this plasmid, including three separate regions containing putative replicons, a partitioning-control system, and a type II restriction modification system, suggest that it may be able to replicate and adapt in a variety of hosts. Although no critical conjugative genes were detected, multiple insertion sequence elements were found scattered throughout pK245, and these may facilitate the dissemination of the antimicrobial resistance determinants. We conclude that pK245 is a chimera which acquired its multiple antimicrobial resistance determinants horizontally from different sources. The identification of pK245 plasmid expands the repertoire of the coexistence of quinolone and extended-spectrum-β-lactam resistance determinants in plasmids carried by various species of the family Enterobacteriaceae in different countries.


Journal of Biological Chemistry | 2004

Quantitative Proteomic Analysis of Metabolic Regulation by Copper Ions in Methylococcus capsulatus (Bath)

Wei-Chun Kao; Yet-Ran Chen; Eugene C. Yi; Hookeun Lee; Qiang Tian; Keh-Ming Wu; Shih-Feng Tsai; Steve S.-F. Yu; Yu-Ju Chen; Ruedi Aebersold; Sunney I. Chan

Copper ions switch the oxidation of methane by soluble methane monooxygenase to particulate methane monooxygenase in Methylococcus capsulatus (Bath). Toward understanding the change in cellular metabolism related to this transcriptional and metabolic switch, we have undertaken genomic sequencing and quantitative comparative analysis of the proteome in M. capsulatus (Bath) grown under different copper-to-biomass ratios by cleavable isotope-coded affinity tag technology. Of the 682 proteins identified, the expressions of 60 proteins were stimulated by at least 2-fold by copper ions; 68 proteins were down-regulated by 2-fold or more. The 60 proteins overexpressed included the methane and carbohydrate metabolic enzymes, while the 68 proteins suppressed were mainly responsible for cellular signaling processes, indicating a role of copper ions in the expression of the genes associated with the metabolism of the organism downstream of methane oxidation. The study has also provided a complete map of the C1 metabolism pathways in this methanotroph and clarified the interrelationships between them.


Journal of Bacteriology | 2008

A Common Virulence Plasmid in Biotype 2 Vibrio vulnificus and Its Dissemination Aided by a Conjugal Plasmid

Chung-Te Lee; Carmen Amaro; Keh-Ming Wu; Esmeralda Valiente; Yi-Feng Chang; Shih-Feng Tsai; Chuan-Hsiung Chang; Lien-I Hor

Strains of Vibrio vulnificus, a marine bacterial species pathogenic for humans and eels, are divided into three biotypes, and those virulent for eels are classified as biotype 2. All biotype 2 strains possess one or more plasmids, which have been shown to harbor the biotype 2-specific DNA sequences. In this study we determined the DNA sequences of three biotype 2 plasmids: pR99 (68.4 kbp) in strain CECT4999 and pC4602-1 (56.6 kb) and pC4602-2 (66.9 kb) in strain CECT4602. Plasmid pC4602-2 showed 92% sequence identity with pR99. Curing of pR99 from strain CECT4999 resulted in loss of resistance to eel serum and virulence for eels but had no effect on the virulence for mice, an animal model, and resistance to human serum. Plasmids pC4602-2 and pR99 could be transferred to the plasmid-cured strain by conjugation in the presence of pC4602-1, which was self-transmissible, and acquisition of pC4602-2 restored the virulence of the cured strain for eels. Therefore, both pR99 and pC4602-2 were virulence plasmids for eels but not mice. A gene in pR99, which encoded a novel protein and had an equivalent in pC4602-2, was further shown to be essential, but not sufficient, for the resistance to eel serum and virulence for eels. There was evidence showing that pC4602-2 may form a cointegrate with pC4602-1. An investigation of six other biotype 2 strains for the presence of various plasmid markers revealed that they all harbored the virulence plasmid and four of them possessed the conjugal plasmid in addition.


Antimicrobial Agents and Chemotherapy | 2007

Sequencing and Comparative Genomic Analysis of pK29, a 269-Kilobase Conjugative Plasmid Encoding CMY-8 and CTX-M-3 β-Lactamases in Klebsiella pneumoniae

Ying-Tsong Chen; Tsai-Ling Lauderdale; Tsai-Lien Liao; Yih-Ru Shiau; Hung-Yu Shu; Keh-Ming Wu; Jing-Jou Yan; Ih-Jen Su; Shih-Feng Tsai

ABSTRACT A 269-kilobase conjugative plasmid, pK29, from a Klebsiella pneumoniae strain was sequenced. The plasmid harbors multiple antimicrobial resistance genes, including those encoding CMY-8 AmpC-type and CTX-M-3 extended-spectrum β-lactamases in the common backbone of IncHI2 plasmids. Mechanisms for dissemination of the resistance genes are highlighted in comparative genomic analyses.


Journal of Bacteriology | 2012

Complete Genome Sequence of Staphylococcus aureus M013, a pvl-Positive, ST59-SCCmec Type V Strain Isolated in Taiwan

Tzu-Wen Huang; Feng-Jui Chen; Wei-Chieh Miu; Tsai-Lien Liao; Ann-Chi Lin; I-Wen Huang; Keh-Ming Wu; Shih-Feng Tsai; Ying-Tsong Chen; Tsai-Ling Lauderdale

We report the complete genome sequence of M013, a representative strain of a pvl-positive, sequence type 59-staphylococcal cassette chromosome mec type V (ST59-SCCmec type V) community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) clone in Taiwan. Comparison of M013 with the genomes of two CA-MRSA strains in the United States revealed major differences in the regions covering several genomic islands and prophages.


BMC Microbiology | 2009

Genomic diversity of citrate fermentation in Klebsiella pneumoniae

Ying-Tsong Chen; Tsai-Lien Liao; Keh-Ming Wu; Tsai-Ling Lauderdale; Jing-Jou Yan; I-Wen Huang; Min-Chi Lu; Yi-Chyi Lai; Yen-Ming Liu; Hung-Yu Shu; Jin-Town Wang; Ih-Jen Su; Shih-Feng Tsai

BackgroundIt has long been recognized that Klebsiella pneumoniae can grow anaerobically on citrate. Genes responsible for citrate fermentation of K. pneumoniae were known to be located in a 13-kb gene cluster on the chromosome. By whole genome comparison of the available K. pneumoniae sequences (MGH 78578, 342, and NTUH-K2044), however, we discovered that the fermentation gene cluster was present in MGH 78578 and 342, but absent in NTUH-K2044. In the present study, the previously unknown genome diversity of citrate fermentation among K. pneumoniae clinical isolates was investigated.ResultsUsing a genomic microarray containing probe sequences from multiple K. pneumoniae strains, we investigated genetic diversity among K. pneumoniae clinical isolates and found that a genomic region containing the citrate fermentation genes was not universally present in all strains. We confirmed by PCR analysis that the gene cluster was detectable in about half of the strains tested. To demonstrate the metabolic function of the genomic region, anaerobic growth of K. pneumoniae in artificial urine medium (AUM) was examined for ten strains with different clinical histories and genomic backgrounds, and the citrate fermentation potential was found correlated with the genomic region. PCR detection of the genomic region yielded high positive rates among a variety of clinical isolates collected from urine, blood, wound infection, and pneumonia. Conserved genetic organizations in the vicinity of the citrate fermentation gene clusters among K. pneumoniae, Salmonella enterica, and Escherichia coli suggest that the13-kb genomic region were not independently acquired.ConclusionNot all, but nearly half of the K. pneumoniae clinical isolates carry the genes responsible for anaerobic growth on citrate. Genomic variation of citrate fermentation genes in K. pneumoniae may contribute to metabolic diversity and adaptation to variable nutrient conditions in different environments.


PLOS Genetics | 2016

Selective Retention of an Inactive Allele of the DKK2 Tumor Suppressor Gene in Hepatocellular Carcinoma

Yung-Feng Lin; Ling-Hui Li; Chih-Hung Lin; Mei-Hua Tsou; Ming-Tai Kiffer Chuang; Keh-Ming Wu; Tsai-Lien Liao; Jian-Chiuan Li; Wei-Jie Wang; Angela Tomita; Beverly Tomita; Shiu-Feng Huang; Shih-Feng Tsai

In an effort to identify the functional alleles associated with hepatocellular carcinoma (HCC), we investigated 152 genes found in the 4q21-25 region that exhibited loss of heterozygosity (LOH). A total of 2,293 pairs of primers were designed for 1,449 exonic and upstream promoter regions to amplify and sequence 76.8–114 Mb on human chromosome 4. Based on the results from analyzing 12 HCC patients and 12 healthy human controls, we discovered 1,574 sequence variations. Among the 99 variants associated with HCC (p < 0.05), four are from the Dickkopf 2 (DKK2) gene: three in the promoter region (g.-967A>T, g.-923C>A, and g.-441T>G) and one in the 5’UTR (c.550T>C). To verify the results, we expanded the subject cohort to 47 HCC cases and 88 healthy controls for conducting haplotype analysis. Eight haplotypes were detected in the non-tumor liver tissue samples, but one major haplotype (TAGC) was found in the tumor tissue samples. Using a reporter assay, this HCC-associated allele registered the lowest level of promoter activity among all the tested haplotype sequences. Retention of this allele in LOH was associated with reduced DKK2 transcription in the HCC tumor tissues. In HuH-7 cells, DKK2 functioned in the Wnt/β-catenin signaling pathway, as an antagonist of Wnt3a, in a dose-dependent manner that inhibited Wnt3a-induced cell proliferation. Taken together, the genotyping and functional findings are consistent with the hypothesis that DKK2 is a tumor suppressor; by selectively retaining a transcriptionally inactive DKK2 allele, the reduction of DKK2 function results in unchecked Wnt/β-catenin signaling, contributing to HCC oncogenesis. Thus our study reveals a new mechanism through which a tumor suppressor gene in a LOH region loses its function by allelic selection.


Evolutionary Bioinformatics | 2016

Genomics Study of Mycobacterium tuberculosis Strains from Different Ethnic Populations in Taiwan

Horng-Yunn Dou; Yih-Yuan Chen; Ying-Tsong Chen; Jia-Ru Chang; Chien-Hsing Lin; Keh-Ming Wu; Ming-Shian Lin; Ih-Jen Su; Shih-Feng Tsai

To better understand the transmission and evolution of Mycobacterium tuberculosis (MTB) in Taiwan, six different MTB isolates (representatives of the Beijing ancient sublineage, Beijing modern sublineage, Haarlem, East-African Indian, T1, and Latin-American Mediterranean (LAM)) were characterized and their genomes were sequenced. Discriminating among large sequence polymorphisms (LSPs) that occur once versus those that occur repeatedly in a genomic region may help to elucidate the biological roles of LSPs and to identify the useful phylogenetic relationships. In contrast to our previous LSP-based phylogeny, the sequencing data allowed us to determine actual genetic distances and to define precisely the phylogenetic relationships between the main lineages of the MTB complex. Comparative genomics analyses revealed more nonsynonymous substitutions than synonymous changes in the coding sequences. Furthermore, MTB isolate M7, a LAM-3 clinical strain isolated from a patient of Taiwanese aboriginal origin, is closely related to F11 (LAM), an epidemic tuberculosis strain isolated in the Western Cape of South Africa. The PE/PPE protein family showed a higher dn/ds ratio compared to that for all protein-coding genes. Finally, we found Haarlem-3 and LAM-3 isolates to be circulating in the aboriginal community in Taiwan, suggesting that they may have originated with post-Columbus Europeans. Taken together, our results revealed an interesting association with historical migrations of different ethnic populations, thus providing a good model to explore the global evolution and spread of MTB.


Scientific Reports | 2017

Lineage-specific SNPs for genotyping of Mycobacterium tuberculosis clinical isolates

Horng-Yunn Dou; Chien-Hsing Lin; Yih-Yuan Chen; Shiu-Ju Yang; Jia-Ru Chang; Keh-Ming Wu; Ying-Tsong Chen; Pei-Ju Chin; Yen-Ming Liu; Ih-Jen Su; Shih-Feng Tsai

Tuberculosis (TB) is a severe infectious disease worldwide. Genetic variation of the causative agent, Mycobacterium tuberculosis (MTB), determines the outcomes of infection and anti-TB treatment. Until recently, there has been no effective and convenient way for classifying clinical isolates based on the DNA sequences of the divergent lineages of MTB infecting human populations. Here, we identified single nucleotide polymorphisms (SNPs) of six representative strains from Taiwan by whole-genome sequencing and comparing the results to the sequence of the H37Rv reference strain. One hundred and ten SNPs, each unique to one of the six strains, were used to genotype 150 additional isolates by applying DNA mass spectrometry. Lineage-specific SNPs were identified that could distinguish the major lineages of the clinical isolates. A subset including 32 SNPs was found to be sufficient to type four major groups of MTB isolates in Taiwan (ancient Beijing, modern Beijing, East African–Indian, and Latin-American Mediterranean). However, there was high genetic homozygosity within the Euro-American lineage, which included spoligotype-classified Haarlem and T strains. By whole-genome sequencing of 12 representative Euro-American isolates, we identified multiple subtype-specific SNPs which allowed us to distinguish two major branches within the Euro-American lineage.

Collaboration


Dive into the Keh-Ming Wu's collaboration.

Top Co-Authors

Avatar

Shih-Feng Tsai

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Ying-Tsong Chen

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Tsai-Lien Liao

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Hung-Yu Shu

Chang Jung Christian University

View shared research outputs
Top Co-Authors

Avatar

Ih-Jen Su

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Tsai-Ling Lauderdale

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yen-Ming Liu

National Health Research Institutes

View shared research outputs
Top Co-Authors

Avatar

Jing-Jou Yan

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yih-Ru Shiau

National Health Research Institutes

View shared research outputs
Researchain Logo
Decentralizing Knowledge