Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kei Endo is active.

Publication


Featured researches published by Kei Endo.


Nature Nanotechnology | 2011

Synthetic RNA-protein complex shaped like an equilateral triangle

Hirohisa Ohno; Tetsuhiro Kobayashi; Rinko Kabata; Kei Endo; Takuma Iwasa; Shige H. Yoshimura; Kunio Takeyasu; Tan Inoue; Hirohide Saito

Synthetic nanostructures consisting of biomacromolecules such as nucleic acids have been constructed using bottom-up approaches. In particular, Watson-Crick base pairing has been used to construct a variety of two- and three-dimensional DNA nanostructures. Here, we show that RNA and the ribosomal protein L7Ae can form a nanostructure shaped like an equilateral triangle that consists of three proteins bound to an RNA scaffold. The construction of the complex relies on the proteins binding to kink-turn (K-turn) motifs in the RNA, which allows the RNA to bend by ∼ 60° at three positions to form a triangle. Functional RNA-protein complexes constructed with this approach could have applications in nanomedicine and synthetic biology.


Cell Stem Cell | 2015

Efficient Detection and Purification of Cell Populations Using Synthetic MicroRNA Switches

Kenji Miki; Kei Endo; Seiya Takahashi; Shunsuke Funakoshi; Ikue Takei; Shota Katayama; Taro Toyoda; Maki Kotaka; Tadashi Takaki; Masayuki Umeda; Chikako Okubo; Misato Nishikawa; Akiko Oishi; Megumi Narita; Ito Miyashita; Kanako Asano; Karin Hayashi; Kenji Osafune; Shinya Yamanaka; Hirohide Saito; Yoshinori Yoshida

Isolation of specific cell types, including pluripotent stem cell (PSC)-derived populations, is frequently accomplished using cell surface antigens expressed by the cells of interest. However, specific antigens for many cell types have not been identified, making their isolation difficult. Here, we describe an efficient method for purifying cells based on endogenous miRNA activity. We designed synthetic mRNAs encoding a fluorescent protein tagged with sequences targeted by miRNAs expressed by the cells of interest. These miRNA switches control their translation levels by sensing miRNA activities. Several miRNA switches (miR-1-, miR-208a-, and miR-499a-5p-switches) efficiently purified cardiomyocytes differentiated from human PSCs, and switches encoding the apoptosis inducer Bim enriched for cardiomyocytes without cell sorting. This approach is generally applicable, as miR-126-, miR-122-5p-, and miR-375-switches purified endothelial cells, hepatocytes, and insulin-producing cells differentiated from hPSCs, respectively. Thus, miRNA switches can purify cell populations for which other isolation strategies are unavailable.


ACS Synthetic Biology | 2012

Feedback control of protein expression in mammalian cells by tunable synthetic translational inhibition.

James A. Stapleton; Kei Endo; Yoshihiko Fujita; Karin Hayashi; Masahiro Takinoue; Hirohide Saito; Tan Inoue

Feedback regulation plays a crucial role in dynamic gene expression in nature, but synthetic translational feedback systems have yet to be demonstrated. Here we use an RNA/protein interaction-based synthetic translational switch to create a feedback system that tightly controls the expression of proteins of interest in mammalian cells. Feedback is mediated by modified ribosomal L7Ae proteins, which bind a set of RNA motifs with a range of affinities. We designed these motifs into L7Ae-encoding mRNA. Newly translated L7Ae binds its own mRNA, inhibiting further translation. This inhibition tightly feedback-regulates the concentration of L7Ae and any fusion partner of interest. A mathematical model predicts system behavior as a function of RNA/protein affinity. We further demonstrate that the L7Ae protein can simultaneously and tunably regulate the expression of multiple proteins of interest by binding RNA control motifs built into each mRNA, allowing control over the coordinated expression of protein networks.


Nature Biotechnology | 2015

Mammalian synthetic circuits with RNA binding proteins for RNA-only delivery.

Liliana Wroblewska; Tasuku Kitada; Kei Endo; Velia Siciliano; Breanna Stillo; Hirohide Saito; Ron Weiss

Synthetic regulatory circuits encoded in RNA rather than DNA could provide a means to control cell behavior while avoiding potentially harmful genomic integration in therapeutic applications. We create post-transcriptional circuits using RNA-binding proteins, which can be wired in a plug-and-play fashion to create networks of higher complexity. We show that the circuits function in mammalian cells when encoded in modified mRNA or self-replicating RNA.


Nature Communications | 2013

A versatile cis-acting inverter module for synthetic translational switches

Kei Endo; Karin Hayashi; Tan Inoue; Hirohide Saito

Artificial genetic switches have been designed and tuned individually in living cells. A method to directly invert an existing OFF switch to an ON switch should be highly convenient to construct complex circuits from well-characterized modules, but developing such a technique has remained a challenge. Here we present a cis-acting RNA module to invert the function of a synthetic translational OFF switch to an ON switch in mammalian cells. This inversion maintains the property of the parental switch in response to a particular input signal. In addition, we demonstrate simultaneous and specific expression control of both the OFF and ON switches. The module fits the criteria of universality and expands the versatility of mRNA-based information processing systems developed for artificially controlling mammalian cellular behaviour.


Analytical Biochemistry | 2010

A binary Cy3 aptamer probe composed of folded modules.

Kei Endo; Yoshikazu Nakamura

Aptamers are short single-stranded DNA or RNA sequences that are selected in vitro based on their high affinity to a target molecule. Dye-binding aptamers are promising tools for real-time detection of not only DNA or RNA sequences but also proteins of interest both in vitro and in vivo. In this study, we aimed to isolate an RNA aptamer to Cy3, a widely used, membrane-permeant, and nontoxic fluorescent cyanine dye. Extensive selection of affinity RNA molecules to Cy3 yielded a unique sequence aptamer named Cy3_apt. The selected Cy3_apt was 83 nucleotides long and successfully shortened to 49 nucleotides long with increased affinity to Cy3 by multiple base changes. The shortest Cy3_apt is composed of two separate hairpin modules that are required for the affinity to Cy3 as monitored by the surface plasmon resonance (SPR) assay. Also, the fluorescence of Cy3 increased on binding to Cy3_apt. The two modules of Cy3_apt, when detached from each other, functioned as a binary aptamer probe. We demonstrate that the binary Cy3_apt probe is applicable to the detection of target oligonucleotides or RNA-RNA interaction by tagging with target sequences. This binary probe consists of two folded modules, referred to as a folded binary probe.


Nucleic Acids Research | 2013

Quantitative and simultaneous translational control of distinct mammalian mRNAs

Kei Endo; James A. Stapleton; Karin Hayashi; Hirohide Saito; Tan Inoue

The introduction of multiple genes into cells is increasingly required for understanding and engineering biological systems. Small-molecule–responsive transcriptional regulation has been widely used to control transgene expression. In contrast, methods for specific and simultaneous regulation of multiple genes with a single regulatory protein remain undeveloped. In this report, we describe a method for quantitatively tuning the expression of multiple transgenes with a translational regulatory protein. A protein that binds a specific RNA motif inserted in the 5′-untranslated region (UTR) of an mRNA modulates the translation of that message in mammalian cells. We provide two independent mechanisms by which to rationally fine-tune the output: the efficiency of translation correlates well with the distance between the inserted motif and the 5′ terminus of the mRNA and is further modulated by the tandem insertion of multiple RNA motifs. The combination of these two approaches allowed us to fine-tune the translational efficiency of target mRNAs over a wide dynamic range. Moreover, we controlled the expression of two transgenes simultaneously and specifically by engineering each cis-regulatory 5′-UTR. The approach provides a useful alternative regulatory layer for controlling gene expression in biological research and engineering.


Scientific Reports | 2016

High-resolution Identification and Separation of Living Cell Types by Multiple microRNA-responsive Synthetic mRNAs

Kei Endo; Karin Hayashi; Hirohide Saito

The precise identification and separation of living cell types is critical to both study cell function and prepare cells for medical applications. However, intracellular information to distinguish live cells remains largely inaccessible. Here, we develop a method for high-resolution identification and separation of cell types by quantifying multiple microRNA (miRNA) activities in live cell populations. We found that a set of miRNA-responsive, in vitro synthesized mRNAs identify a specific cell population as a sharp peak and clearly separate different cell types based on less than two-fold differences in miRNA activities. Increasing the number of miRNA-responsive mRNAs enhanced the capability for cell identification and separation, as we precisely and simultaneously distinguished different cell types with similar miRNA profiles. In addition, the set of synthetic mRNAs separated HeLa cells into subgroups, uncovering heterogeneity of the cells and the level of resolution achievable. Our method could identify target live cells and improve the efficiency of cell purification from heterogeneous populations.


Nature Methods | 2014

Expanding the synthetic ribonucleoprotein world in cells

Kei Endo; Callum Parr; Hirohide Saito

Protein-responsive ribozymes generated by a streamlined design process will expand the plug-and-play toolbox for synthetic biologists.


Archive | 2018

mRNA Engineering for the Control of Mammalian Cells in Medical Applications

Kei Endo; Hirohide Saito

Messenger RNA (mRNA) is an important carrier of genetic information and shows increasing medical application potential. The transfer of in vitro synthesized mRNA molecules into cells enables the expression of genes of interest without unexpected damage to the genomic DNA that risks cellular defects or tumorigenesis. Along with forcing the expression of external genes, engineered mRNAs can detect intracellular information for the artificial regulation of gene expressions. These features indicate the potential of mRNAs as central devices to engineer and control cells both in vitro and in vivo. Moreover, such devices can act as components of complex and sophisticated cellular systems or networks. In this article, we summarize recent advances in mRNA engineering and their application in the biomedical field and discuss future perspectives concerning mRNA-based biotechnology.

Collaboration


Dive into the Kei Endo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liliana Wroblewska

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ron Weiss

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Tasuku Kitada

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge