Kei M. Igarashi
Norwegian University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kei M. Igarashi.
The Journal of Neuroscience | 2012
Kei M. Igarashi; Nao Ieki; Myungho An; Yukie Yamaguchi; Shin Nagayama; Ko Kobayakawa; Reiko Kobayakawa; Manabu Tanifuji; Hitoshi Sakano; Wei R. Chen; Kensaku Mori
Odor signals are conveyed from the olfactory bulb to the olfactory cortex (OC) by mitral cells (MCs) and tufted cells (TCs). However, whether and how the two types of projection neuron differ in function and axonal connectivity is still poorly understood. Odor responses and axonal projection patterns were compared between MCs and TCs in mice by visualizing axons of electrophysiologically identified single neurons. TCs demonstrated shorter onset latency for reliable responses than MCs. The shorter latency response of TCs was maintained in a wide range of odor concentrations, whereas MCs responded only to strong signals. Furthermore, individual TCs projected densely to focal targets only in anterior areas of the OC, whereas individual MCs dispersedly projected to all OC areas. Surprisingly, in anterior OC areas, the two cell types projected to segregated subareas. These results suggest that MCs and TCs transmit temporally distinct odor information to different OC targets.
Nature | 2014
Kei M. Igarashi; Li Lu; Laura Lee Colgin; May-Britt Moser; Edvard I. Moser
Accumulating evidence points to cortical oscillations as a mechanism for mediating interactions among functionally specialized neurons in distributed brain circuits. A brain function that may use such interactions is declarative memory—that is, memory that can be consciously recalled, such as episodes and facts. Declarative memory is enabled by circuits in the entorhinal cortex that interface the hippocampus with the neocortex. During encoding and retrieval of declarative memories, entorhinal and hippocampal circuits are thought to interact via theta and gamma oscillations, which in awake rodents predominate frequency spectra in both regions. In favour of this idea, theta–gamma coupling has been observed between entorhinal cortex and hippocampus under steady-state conditions in well-trained rats; however, the relationship between interregional coupling and memory formation remains poorly understood. Here we show, by multisite recording at successive stages of associative learning, that the coherence of firing patterns in directly connected entorhinal–hippocampus circuits evolves as rats learn to use an odour cue to guide navigational behaviour, and that such coherence is invariably linked to the development of ensemble representations for unique trial outcomes in each area. Entorhinal–hippocampal coupling was observed specifically in the 20–40-hertz frequency band and specifically between the distal part of hippocampal area CA1 and the lateral part of entorhinal cortex, the subfields that receive the predominant olfactory input to the hippocampal region. Collectively, the results identify 20–40-hertz oscillations as a mechanism for synchronizing evolving representations in dispersed neural circuits during encoding and retrieval of olfactory–spatial associative memory.
Frontiers in Neural Circuits | 2010
Shin Nagayama; Allicia Enerva; Max L. Fletcher; Arjun V. Masurkar; Kei M. Igarashi; Kensaku Mori; Wei Chen
In the past decade, much has been elucidated regarding the functional organization of the axonal connection of olfactory sensory neurons to olfactory bulb (OB) glomeruli. However, the manner in which projection neurons of the OB process odorant input and send this information to higher brain centers remains unclear. Here, we report long-range, large-scale tracing of the axonal projection patterns of OB neurons using two-photon microscopy. Tracer injection into a single glomerulus demonstrated widely distributed mitral/tufted cell axonal projections on the lateroventral surface of the mouse brain, including the anterior/posterior piriform cortex (PC) and olfactory tubercle (OT). We noted two distinct groups of labeled axons: PC-orienting axons and OT-orienting axons. Each group occupied distinct parts of the lateral olfactory tract. PC-orienting axons projected axon collaterals to a wide area of the PC but only a few collaterals to the OT. OT-orienting axons densely projected axon collaterals primarily to the anterolateral OT (alOT). Different colored dye injections into the superficial and deep portions of the OB external plexiform layer revealed that the PC-orienting axon populations originated in presumed mitral cells and the OT-orienting axons in presumed tufted cells. These data suggest that although mitral and tufted cells receive similar odor signals from a shared glomerulus, they process the odor information in different ways and send their output to different higher brain centers via the PC and alOT.
Neuron | 2015
Li Lu; Kei M. Igarashi; Menno P. Witter; Edvard I. Moser; May-Britt Moser
We asked whether the structural heterogeneity of the hippocampal CA3-CA2 axis is reflected in how space is mapped onto place cells in CA3-CA2. Place fields were smaller and sharper in proximal CA3 than in distal CA3 and CA2. The proximodistal shift was accompanied by a progressive loss in the ability of place cells to distinguish configurations of the same spatial environment, as well as a reduction in the extent to which place cells formed uncorrelated representations for different environments. The transition to similar representations was nonlinear, with the sharpest drop in distal CA3. These functional changes along the CA3-CA2 axis mirror gradients in gene expression and connectivity that partly override cytoarchitectonic boundaries between the subfields of the hippocampus. The results point to the CA3-CA2 axis as a functionally graded system with powerful pattern separation at the proximal end, near the dentate gyrus, and stronger pattern completion at the CA2 end.
FEBS Letters | 2014
Kei M. Igarashi; Hiroshi Ito; Edvard I. Moser; May-Britt Moser
Decades of neuroscience research have shed light on the hippocampus as a key structure for the formation of episodic memory. The hippocampus is divided into distinct subfields – CA1, CA2 and CA3. While accumulating evidence points to cellular and synaptic heterogeneity within each subfield, this heterogeneity has not received much attention in computational and behavioural studies and subfields have until recently been considered functionally uniform. However, a couple of recent studies have demonstrated prominent functional differences along the proximodistal axis of the CA1 subfield. Here, we review anatomical and physiological differences that might give rise to heterogeneity along the proximodistal axis of CA1 as well as the functional implications of such heterogeneity. We suggest that such heterogeneity in CA1 operates dynamically in the sense that the CA1 network alternates, on a subsecond scale, between a state where the network is primarily responsive to functionally segregated direct inputs from entorhinal cortex and a state where cells predominantly are controlled by more integrated inputs from CA3.
Current Opinion in Neurobiology | 2015
Kei M. Igarashi
Neural oscillations observed in local field potentials (LFP) represent gross cellular activity near the recording electrode. Coupling of oscillations in distributed brain circuits has been proposed to enhance communication across the circuits, and the plasticity in oscillatory coupling can underlie flexible task learning, but the direct evidence has been lacking. Recently, evidence for plasticity in oscillatory coupling in theta, beta and gamma bands has been obtained in memory circuits consisted of the hippocampus and its connected areas, suggesting importance of oscillatory coupling plasticity in memory processing. I hypothesize that such plasticity in oscillatory coupling could be a key mechanism for enhancing inter-regional neural communication, especially in the entorhinal-hippocampal and prefrontal-hippocampal memory circuits that underlie formation, control and retrieval of memory.
Biomedical Optics Express | 2011
Hideyuki Watanabe; Uma Maheswari Rajagopalan; Yu Nakamichi; Kei M. Igarashi; Violeta Dimitrova Madjarova; Hirofumi Kadono; Manabu Tanifuji
Here, we report in vivo 3-D visualization of the layered organization of a rat olfactory bulb (OB) by a swept source optical coherence tomography (SS-OCT). The SS-OCT operates at a wavelength of 1334 nm with respective theoretical depth and lateral resolutions of 6.7 μm and 15.4 μm in air and hence it is possible to get a 3D structural map of OB in vivo at the micron level resolution with millimeter-scale imaging depth. Up until now, with methods such as MRI, confocal microscopy, OB depth structure in vivo had not been clearly visualized as these do not satisfy the criterion of simultaneously providing micron-scale spatial resolution and imaging up to a few millimeter in depth. In order to confirm the OB’s layered organization revealed by SS-OCT, we introduced the technique of electrocoagulation to make landmarks across the layered structure. To our knowledge this is such a first study that combines electrocoagulation and OCT in vivo of rat OB. Our results confirmed the layered organization of OB, and moreover the layers were clearly identified by electrocoagulation landmarks both in the OCT structural and anatomical slice images. We expect such a combined study is beneficial for both OCT and neuroscience fields.
Brain Research | 2016
Kei M. Igarashi
How do we know where we are, and how do we remember the places we visited? Since the discovery of place cells in 1971, our understanding of the brains maps of external space has exploded. Yet the origin of the place-cell signal remained elusive. The discovery of grid cells in the medial entorhinal cortex (MEC) in 2005 put place cells in a context, since the existence of grid cells pointed to circuit mechanisms that might explain the formation of place cells. In this review, I shall review recent experimental and theoretical advances in the understanding of how space is mapped in the medial entorhinal cortex. I will also review recent studies of interactions between hippocampus and the lateral entorhinal cortex (LEC). Research on spatial mapping in the hippocampal-entorhinal system provides a fundament for future attempts to decipher some of the neural-circuit codes of the cortex.
European Journal of Neuroscience | 2011
Akio Tsuboi; Takeshi Imai; Hiroyuki Kato; Kei M. Igarashi; Misao Suzuki; Kensaku Mori; Hitoshi Sakano
Since the discovery of odorant receptors (ORs) in rodents, most ORs have remained orphan receptors. Even for deorphanized ORs in vitro, their in vivo properties are largely unknown. Here, we report odor response profiles of two highly homologous mouse ORs, MOR29A and MOR29B, both in vivo and in vitro. The BAC transgenic mouse was generated, in which olfactory sensory neurons (OSNs) expressing the transgenes MOR29A and MOR29B were differently tagged with IRES‐gapECFP and IRES‐gapEYFP, respectively. MOR29A‐ and MOR29B‐expressing OSN axons converged on separate but nearby loci on the dorsal surface of the olfactory bulb (OB). Optical imaging of intrinsic signals in the OB identified five different phenyl ethers as candidate ligands for MOR29B. Based on in vitro calcium imaging with the isolated OSNs and luciferase assay with heterologous cells, only guaiacol and vanillin were found to be potent agonists for MOR29A and MOR29B. Because of its accessible glomerular locations in the dorsal OB and defined odor response profiles both in vivo and in vitro, the MOR29A/29B tagging mouse will serve as an excellent tool for studying both odor‐signal processing and neural circuitry in the OB.
Biomedical Optics Express | 2011
Hideyuki Watanabe; Uma Maheswari Rajagopalan; Yu Nakamichi; Kei M. Igarashi; Hirofumi Kadono; Manabu Tanifuji
In studies of in vivo extracellular recording, we usually penetrate electrodes almost blindly into the neural tissue, in order to detect the neural activity from an expected target location at a certain depth. After the recording, it is necessary for us to determine the position of the electrodes precisely. Generally, to identify the position of the electrode, one method is to examine the postmortem tissue sample at micron resolution. The other method is using MRI and it does not have enough resolution to resolve the neural structures. To solve such problems, we propose swept source optical coherence tomography (SS-OCT) as a tool to visualize the cross-sectional image of the neural target structure along with the penetrating electrode. We focused on a rodent olfactory bulb (OB) as the target. We succeeded in imaging both the OB layer structure and the penetrating electrode, simultaneously. The method has the advantage of detecting the electrode shape and the position in real time, in vivo. These results indicate the possibility of using SS-OCT as a powerful tool for guiding the electrode into the target tissue precisely in real time and localizing the electrode tip during electrophysiological recordings.