Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kei Omata is active.

Publication


Featured researches published by Kei Omata.


The Journal of Clinical Endocrinology and Metabolism | 2016

Molecular Heterogeneity in Aldosterone-Producing Adenomas

Kazutaka Nanba; Andrew X. Chen; Kei Omata; Michelle Vinco; Thomas J. Giordano; Tobias Else; Gary D. Hammer; Scott A. Tomlins; William E. Rainey

CONTEXT The use of next-generation sequencing has resulted in the identification of recurrent somatic mutations underlying primary aldosteronism (PA). However, significant gaps remain in our understanding of the relationship between tumor aldosterone synthase (CYP11B2) expression and somatic mutation status. OBJECTIVE The objective of the study was to investigate tumor CYP11B2 expression and somatic aldosterone-driver gene mutation heterogeneity. METHODS Fifty-one adrenals from 51 PA patients were studied. Immunohistochemistry for CYP11B2 was performed. Aldosterone-producing adenomas with intratumor CYP11B2 heterogeneity were analyzed for mutation status using targeted next-generation sequencing. DNA was isolated from CYP11B2-positive, CYP11B2-negative, and adjacent normal areas from formalin-fixed, paraffin-embedded sections. RESULTS Of 51 adrenals, seven (14 %) showed distinct heterogeneity in CYP11B2 by immunohistochemistry, including six adenomas with intratumor heterogeneity and one multinodular hyperplastic adrenal with both CYP11B2-positive and -negative nodules. Of the six adrenocortical adenomas with CYP11B2 heterogeneity, three had aldosterone-regulating mutations (CACNA1D p.F747C, KCNJ5 p.L168R, ATP1A1 p.L104R) only in CYP11B2-positive regions, and one had two different mutations localized to two histologically distinct CYP11B2-positive regions (ATP2B3 p.L424_V425del, KCNJ5 p.G151R). Lastly, one adrenal with multiple CYP11B2-expressing nodules showed different mutations in each (CACNA1D p.F747V and ATP1A1 p.L104R), and no mutations were identified in CYP11B2-negative nodule or adjacent normal adrenal. CONCLUSIONS Adrenal tumors in patients with PA can demonstrate clear heterogeneity in CYP11B2 expression and somatic mutations in driver genes for aldosterone production. These findings suggest that aldosterone-producing adenoma tumorigenesis can occur within preexisting nodules through the acquisition of somatic mutations that drive aldosterone production.


Hypertension | 2015

Measurement of Peripheral Plasma 18-Oxocortisol Can Discriminate Unilateral Adenoma From Bilateral Diseases in Patients With Primary Aldosteronism

Fumitoshi Satoh; Ryo Morimoto; Yoshikiyo Ono; Yoshitsugu Iwakura; Kei Omata; Masataka Kudo; Kei Takase; Kazumasa Seiji; Hidehiko Sasamoto; Seijiro Honma; Mitsunobu Okuyama; Kouwa Yamashita; Celso E. Gomez-Sanchez; William E. Rainey; Yoichi Arai; Hironobu Sasano; Yasuhiro Nakamura; Sadayoshi Ito

Adrenal venous sampling is currently the only reliable method to distinguish unilateral from bilateral diseases in primary aldosteronism. In this study, we attempted to determine whether peripheral plasma levels of 18-oxocortisol (18oxoF) and 18-hydroxycortisol could contribute to the clinical differentiation between aldosteronoma and bilateral hyperaldosteronism in 234 patients with primary aldosteronism, including computed tomography (CT)–detectable aldosteronoma (n=113) and bilateral hyperaldosteronism (n=121), all of whom underwent CT and adrenal venous sampling. All aldosteronomas were surgically resected and the accuracy of diagnosis was clinically and histopathologically confirmed. 18oxoF and 18-hydroxycortisol were measured using liquid chromatography tandem mass spectrometry. Receiver operating characteristic analysis of 18oxoF discrimination of adenoma from hyperplasia demonstrated sensitivity/specificity of 0.83/0.99 at a cut-off value of 4.7 ng/dL, compared with that based on 18-hydroxycortisol (sensitivity/specificity: 0.62/0.96). 18oxoF levels above 6.1 ng/dL or of aldosterone >32.7 ng/dL were found in 95 of 113 patients with aldosteronoma (84%) but in none of 121 bilateral hyperaldosteronism, 30 of whom harbored CT-detectable unilateral nonfunctioning nodules in their adrenals. In addition, 18oxoF levels below 1.2 ng/dL, the lowest in aldosteronoma, were found 52 of the 121 (43%) patients with bilateral hyperaldosteronism. Further analysis of 27 patients with CT-undetectable micro aldosteronomas revealed that 8 of these 27 patients had CT-detectable contralateral adrenal nodules, the highest values of 18oxoF and aldosterone were 4.8 and 24.5 ng/dL, respectively, both below their cut-off levels indicated above. The peripheral plasma 18oxoF concentrations served not only to differentiate aldosteronoma but also could serve to avoid unnecessary surgery for nonfunctioning adrenocortical nodules concurrent with hyperplasia or microadenoma.


The American Journal of Surgical Pathology | 2016

Tubulocystic carcinoma of the kidney with poorly differentiated foci

Steven C. Smith; Kiril Trpkov; Ying Bei Chen; Rohit Mehra; Deepika Sirohi; Chisato Ohe; Andi K. Cani; Daniel H. Hovelson; Kei Omata; Jonathan B. McHugh; Wolfram Jochum; Maurizio Colecchia; Mitual Amin; Mukul Divatia; Ondřej Hes; Santosh Menon; Isabela Werneck da Cunha; Sergio Antonio Tripodi; Fadi Brimo; Anthony J. Gill; Adeboye O. Osunkoya; Cristina Magi-Galluzzi; Mathilde Sibony; Sean R. Williamson; Gabriella Nesi; Maria M. Picken; Fiona Maclean; Abbas Agaimy; Liang Cheng; Jonathan I. Epstein

An emerging group of high-grade renal cell carcinomas (RCCs), particularly carcinomas arising in the hereditary leiomyomatosis renal cell carcinoma syndrome (HLRCC), show fumarate hydratase (FH) gene mutation and loss of function. On the basis of similar cytomorphology and clinicopathologic features between these tumors and cases described as tubulocystic carcinomas with poorly differentiated foci (TC-PD) of infiltrative adenocarcinoma, we hypothesized a relationship between these entities. First, 29 RCCs with morphology of TC-PD were identified retrospectively and assessed for FH expression and aberrant succination (2SC) by immunohistochemistry (IHC), with targeted next-generation sequencing of 409 genes—including FH—performed on a subset. The 29 TC-PD RCCs included 21 males and 8 females, aged 16 to 86 years (median, 46), with tumors measuring 3 to 21 cm (median, 9) arising in the right (n=16) and left (n=13) kidneys. Family history or stigmata of HLRCC were identifiable only retrospectively in 3 (12%). These tumors were aggressive, with 79% showing perinephric extension, nodal involvement in 41%, and metastasis in 86%. Of these, 16 (55%) demonstrated loss of FH by IHC (14/14 with positive 2SC). In contrast, 5 (17%) showed a wild-type immunoprofile of FH+/2SC−. An intriguing group of 8 (28%) showed variable FH± positivity, but with strong/diffuse 2SC+. Next-generation sequencing revealed 8 cases with FH mutations, including 5 FH−/2SC+ and 3 FH±/2SC+ cases, but none in FH+/2SC− cases. Secondly, we retrospectively reviewed the morphology of 2 well-characterized cohorts of RCCs with FH-deficiency determined by IHC or sequencing (n=23 and n=9), unselected for TC-PD pattern, identifying the TC-PD morphology in 10 (31%). We conclude that RCCs with TC-PD morphology are enriched for FH deficiency, and we recommend additional workup, including referral to genetic counseling, for prospective cases. In addition, based on these and other observations, we propose the term “FH-deficient RCC” as a provisional term for tumors with a combination of suggestive morphology and immunophenotype but where genetic confirmation is unavailable upon diagnosis. This term will serve as a provisional nomenclature that will enable triage of individual cases for genetic counseling and testing, while designating these cases for prospective studies of their relationship to HLRCC.


European Journal of Endocrinology | 2015

Is there a role for segmental adrenal venous sampling and adrenal sparing surgery in patients with primary aldosteronism

Fumitoshi Satoh; Ryo Morimoto; Kazumasa Seiji; Nozomi Satani; Hideaki Ota; Yoshitsugu Iwakura; Yoshikiyo Ono; Masataka Kudo; Masahiro Nezu; Kei Omata; Yuta Tezuka; Yoshihide Kawasaki; Shigeto Ishidoya; Yoichi Arai; Kei Takase; Yasuhiro Nakamura; Keely May McNamara; Hironobu Sasano; Sadayoshi Ito

OBJECTIVE AND DESIGN Adrenal venous sampling (AVS) is critical to determine the subtype of primary aldosteronism (PA). Central AVS (C-AVS)--that is, the collection of effluents from bilateral adrenal central veins (CV)--sometimes does not allow differentiation between bilateral aldosterone-producing adenomas (APA) and idiopathic hyperaldosteronism. To establish the best treatment course, we have developed segmental AVS (S-AVS); that is, we collect effluents from the tributaries of CV to determine the intra-adrenal sources of aldosterone overproduction. We then evaluated the clinical utility of this novel approach in the diagnosis and treatment of PA. METHODS We performed C-AVS and/or S-AVS in 297 PA patients and assessed the accuracy of diagnosis based on the results of C-AVS (n=138, 46.5%) and S-AVS (n=159, 53.5%) by comparison with those of clinicopathological evaluation of resected specimens. RESULTS S-AVS demonstrated both elevated and attenuated secretion of aldosterone from APA and non-tumorous segments, respectively, in patients with bilateral APA and recurrent APA. These findings were completely confirmed by detailed histopathological examination after surgery. S-AVS, but not C-AVS, also served to identify APA located distal from the CV. CONCLUSIONS Compared to C-AVS, S-AVS served to identify APA in some patients, and its use should expand the pool of patients eligible for adrenal sparing surgery through the identification of unaffected segments, despite the fact that S-AVS requires more expertise and time. Especially, this new technique could enormously benefit patients with bilateral or recurrent APA because of the preservation of non-tumorous glandular tissue.


Hypertension | 2015

Measurement of Peripheral Plasma 18-Oxocortisol Can Discriminate Unilateral Adenoma From Bilateral Diseases in Patients With Primary AldosteronismNovelty and Significance

Fumitoshi Satoh; Ryo Morimoto; Yoshikiyo Ono; Yoshitsugu Iwakura; Kei Omata; Masataka Kudo; Kei Takase; Kazumasa Seiji; Hidehiko Sasamoto; Seijiro Honma; Mitsunobu Okuyama; Kouwa Yamashita; Celso E. Gomez-Sanchez; William E. Rainey; Yoichi Arai; Hironobu Sasano; Yasuhiro Nakamura; Sadayoshi Ito

Adrenal venous sampling is currently the only reliable method to distinguish unilateral from bilateral diseases in primary aldosteronism. In this study, we attempted to determine whether peripheral plasma levels of 18-oxocortisol (18oxoF) and 18-hydroxycortisol could contribute to the clinical differentiation between aldosteronoma and bilateral hyperaldosteronism in 234 patients with primary aldosteronism, including computed tomography (CT)–detectable aldosteronoma (n=113) and bilateral hyperaldosteronism (n=121), all of whom underwent CT and adrenal venous sampling. All aldosteronomas were surgically resected and the accuracy of diagnosis was clinically and histopathologically confirmed. 18oxoF and 18-hydroxycortisol were measured using liquid chromatography tandem mass spectrometry. Receiver operating characteristic analysis of 18oxoF discrimination of adenoma from hyperplasia demonstrated sensitivity/specificity of 0.83/0.99 at a cut-off value of 4.7 ng/dL, compared with that based on 18-hydroxycortisol (sensitivity/specificity: 0.62/0.96). 18oxoF levels above 6.1 ng/dL or of aldosterone >32.7 ng/dL were found in 95 of 113 patients with aldosteronoma (84%) but in none of 121 bilateral hyperaldosteronism, 30 of whom harbored CT-detectable unilateral nonfunctioning nodules in their adrenals. In addition, 18oxoF levels below 1.2 ng/dL, the lowest in aldosteronoma, were found 52 of the 121 (43%) patients with bilateral hyperaldosteronism. Further analysis of 27 patients with CT-undetectable micro aldosteronomas revealed that 8 of these 27 patients had CT-detectable contralateral adrenal nodules, the highest values of 18oxoF and aldosterone were 4.8 and 24.5 ng/dL, respectively, both below their cut-off levels indicated above. The peripheral plasma 18oxoF concentrations served not only to differentiate aldosteronoma but also could serve to avoid unnecessary surgery for nonfunctioning adrenocortical nodules concurrent with hyperplasia or microadenoma.


Modern Pathology | 2016

Next generation sequencing of Cytokeratin 20-negative Merkel cell carcinoma reveals ultraviolet-signature mutations and recurrent TP53 and RB1 inactivation

Paul W. Harms; Angela M. B. Collie; Daniel H. Hovelson; Andi K. Cani; Monique Verhaegen; Rajiv M. Patel; Douglas R. Fullen; Kei Omata; Andrzej A. Dlugosz; Scott A. Tomlins; Steven D. Billings

Merkel cell carcinoma is a rare but highly aggressive cutaneous neuroendocrine carcinoma. Cytokeratin 20 (CK20) is expressed in ~95% of Merkel cell carcinomas and is useful for distinction from morphologically similar entities including metastatic small-cell lung carcinoma. Lack of CK20 expression may make diagnosis of Merkel cell carcinoma more challenging, and has unknown biological significance. Approximately 80% of CK20-positive Merkel cell carcinomas are associated with the oncogenic Merkel cell polyomavirus. Merkel cell carcinomas lacking Merkel cell polyomavirus display distinct genetic changes from Merkel cell polyomavirus-positive Merkel cell carcinoma, including RB1 inactivating mutations. Unlike CK20-positive Merkel cell carcinoma, the majority of CK20-negative Merkel cell carcinomas are Merkel cell polyomavirus-negative, suggesting CK20-negative Merkel cell carcinomas predominantly arise through virus-independent pathway(s) and may harbor additional genetic differences from conventional Merkel cell carcinoma. Hence, we analyzed 15 CK20-negative Merkel cell carcinoma tumors (10 Merkel cell polyomavirus-negative, four Merkel cell polyomavirus-positive, and one undetermined) using the Ion Ampliseq Comprehensive Cancer Panel, which assesses copy number alterations and mutations in 409 cancer-relevant genes. Twelve tumors displayed prioritized high-level chromosomal gains or losses (average 1.9 per tumor). Non-synonymous high-confidence somatic mutations were detected in 14 tumors (average 11.9 per tumor). Assessing all somatic coding mutations, an ultraviolet-signature mutational profile was present, and more prevalent in Merkel cell polyomavirus-negative tumors. Recurrent deleterious tumor suppressor mutations affected TP53 (9/15, 60%), RB1 (3/15, 20%), and BAP1 (2/15, 13%). Oncogenic activating mutations included PIK3CA (3/15, 20%), AKT1 (1/15, 7%) and EZH2 (1/15, 7%). In conclusion, CK20-negative Merkel cell carcinoma display overlapping genetic changes with CK20-positive Merkel cell carcinoma, including RB1 mutations restricted to Merkel cell polyomavirus-negative tumors. However, some CK20-negative Merkel cell carcinomas harbor mutations not previously described in Merkel cell carcinoma. Hence, CK20-negative Merkel cell carcinomas harbor diverse oncogenic drivers which may represent therapeutic targets in individual tumors.


The Journal of Clinical Endocrinology and Metabolism | 2016

Histopathological Classification of Cross-Sectional Image–Negative Hyperaldosteronism

Yuto Yamazaki; Yasuhiro Nakamura; Kei Omata; Kazue Ise; Yuta Tezuka; Yoshikiyo Ono; Ryo Morimoto; Yukinaga Nozawa; Celso E. Gomez-Sanchez; Scott A. Tomlins; William E. Rainey; Sadayoshi Ito; Fumitoshi Satoh; Hironobu Sasano

Context Approximately half of patients with primary aldosteronism (PA) have clinically evident disease according to clinical (hypertension) and/or laboratory (aldosterone and renin levels) findings but do not have nodules detectable in routine cross-sectional imaging. However, the detailed histopathologic, steroidogenic, and pathobiological features of cross-sectional image-negative PA are controversial. Objective To examine histopathology, steroidogenic enzyme expression, and aldosterone-driver gene somatic mutation status in cross-sectional image-negative hyperaldosteronism. Methods Twenty-five cross-sectional image-negative cases were retrospectively reviewed. In situ adrenal aldosterone production capacity was determined using immunohistochemistry (IHC) of steroidogenic enzymes. Aldosterone-driver gene somatic mutation status (ATP1A1, ATP2B3, CACNA1D, and KCNJ5) was determined in the CYP11B2 immunopositive areas [n = 35; micronodule, n = 32; zona glomerulosa (ZG), n = 3] using next-generation sequencing after macrodissection. Results Cases were classified as multiple adrenocortical micronodules (MN; n = 13) or diffuse hyperplasia (DH) of ZG (n = 12) based upon histopathological evaluation and CYP11B2 IHC. Aldosterone-driver gene somatic mutations were detected in 21 of 26 (81%) of CYP11B2-positive cortical micronodules in MN; 17 (65%) mutations were in CACNA1D, 2 (8%) in KCNJ5, and 1 each (4% each) in ATP1A1 and ATP2B. One of 6 (17%) of nodules in DH harbored somatic aldosterone-driver gene mutations (CACNA1D); however, no mutations were detected in CYP11B2-positive nonnodular DH areas. Conclusion Morphologic evaluation and CYP11B2 IHC enabled the classification of cross-sectional image-negative hyperaldosteronism into MN and DH. Somatic mutations driving aldosterone overproduction are common in micronodules of MN, suggesting a histological entity possibly related to aldosterone-producing cell cluster development.


Radiology | 2016

Intra-adrenal Aldosterone Secretion: Segmental Adrenal Venous Sampling for Localization

Nozomi Satani; Hideki Ota; Kazumasa Seiji; Ryo Morimoto; Masataka Kudo; Yoshitsugu Iwakura; Yoshikiyo Ono; Masahiro Nezu; Kei Omata; Sadayoshi Ito; Fumitoshi Satoh; Kei Takase

PURPOSE To use segmental adrenal venous sampling (AVS) (S-AVS) of effluent tributaries (a version of AVS that, in addition to helping identify aldosterone hypersecretion, also enables the evaluation of intra-adrenal hormone distribution) to detect and localize intra-adrenal aldosterone secretion. MATERIALS AND METHODS The institutional review board approved this study, and all patients provided informed consent. S-AVS was performed in 65 patients with primary aldosteronism (34 men; mean age, 50.9 years ± 11 [standard deviation]). A microcatheter was inserted in first-degree tributary veins. Unilateral aldosterone hypersecretion at the adrenal central vein was determined according to the lateralization index after cosyntropin stimulation. Excess aldosterone secretion at the adrenal tributary vein was considered to be present when the aldosterone/cortisol ratio from this vein exceeded that from the external iliac vein; suppressed secretion was indicated by the opposite pattern. Categoric variables were expressed as numbers and percentages; continuous variables were expressed as means ± standard errors of the mean. RESULTS The AVS success rate, indicated by a selectivity index of 5 or greater, was 98% (64 of 65). The mean numbers of sampled tributaries on the left and right sides were 2.11 and 1.02, respectively. The following diagnoses were made on the basis of S-AVS results: unilateral aldosterone hypersecretion in 30 patients, bilateral hypersecretion without suppressed segments in 22 patients, and bilateral hypersecretion with at least one suppressed segment in 12 patients. None of the patients experienced severe complications. CONCLUSION S-AVS could be used to identify heterogeneous intra-adrenal aldosterone secretion. Patients who have bilateral aldosterone-producing adenomas can be treated with adrenal-sparing surgery or other minimally invasive local therapies if any suppressed segment is identified at S-AVS.


Journal of Hematology & Oncology | 2015

Comprehensive serial molecular profiling of an “N of 1” exceptional non-responder with metastatic prostate cancer progressing to small cell carcinoma on treatment

Kunal C. Kadakia; Scott A. Tomlins; Saagar Sanghvi; Andi K. Cani; Kei Omata; Daniel H. Hovelson; Chia Jen Liu; Kathleen A. Cooney

ImportanceSmall cell carcinoma/neuroendocrine prostate cancer (NePC) is a lethal, poorly understood prostate cancer (PCa) subtype. Controversy exists about the origin of NePC in this setting.ObjectiveTo molecularly profile archived biopsy specimens from a case of early-onset PCa that rapidly progressed to NePC to identify drivers of the aggressive course and mechanisms of NePC origin and progression.Design, setting, and participantsA 47-year-old patient presented with metastatic prostatic adenocarcinoma (Gleason score 9). After a 6-month response to androgen deprivation therapy, the patient developed jaundice and liver biopsy revealed exclusively NePC. Targeted next generation sequencing (NGS) from formalin-fixed paraffin-embedded (FFPE)-isolated DNA was performed from the diagnostic prostate biopsy and the liver biopsy at progression.InterventionAndrogen deprivation therapy for adenocarcinoma followed by multiagent chemotherapy for NePC.Main outcomes and measuresIdentification of the mutational landscape in primary adenocarcinoma and NePC liver metastasis. Whether the NePC arose independently or was derived from the primary adenocarcinoma was considered based on mutational profiles.ResultsA deleterious somatic SMAD4 L535fs variant was present in both prostate and liver specimens; however, a TP53 R282W mutation was exclusively enriched in the liver specimen. Copy number analysis identified concordant, low-level alterations in both specimens, with focal MYCL amplification and homozygous PTEN, RB1, and MAP2K4 losses identified exclusively in the NePC specimen. Integration with published genomic profiles identified MYCL as a recurrently amplified in NePC.Conclusions and relevanceNGS of routine biopsy samples from an exceptional non-responder identified SMAD4 as a driver of the aggressive course and supports derivation of NePC from primary adenocarcinoma (transdifferentiation).


European Journal of Endocrinology | 2016

Double adrenocortical adenomas harboring independent KCNJ5 and PRKACA somatic mutations

Kazutaka Nanba; Kei Omata; Scott A. Tomlins; Thomas J. Giordano; Gary D. Hammer; William E. Rainey; Tobias Else

OBJECTIVE Co-secretion of cortisol and aldosterone can be observed in adrenal adenomas. The aim of this study was to investigate the molecular characteristics of a co-existing aldosterone- and a cortisol-producing adenoma (CPA) in the same patient. DESIGN AND METHODS Two different adenomas within the same adrenal gland from a 49-year-old female patient with primary aldosteronism (PA) and Cushings syndrome (CS) were studied. Multiple formalin-fixed paraffin-embedded tumor blocks were used for the analysis. Immunohistochemistry (IHC) was performed using a specific antibody against aldosterone synthase (CYP11B2). DNA and RNA were isolated separately from CYP11B2-positive and -negative tumor regions based on CYP11B2 IHC results. RESULTS CYP11B2 IHC clearly demonstrated that three pieces from one adenoma were positive for CYP11B2 and the remaining three from the other adenoma were negative for CYP11B2. In quantitative real-time RT-PCR, CYP11B2 mRNA was upregulated in CYP11B2-positive tumor specimens (219-fold vs CYP11B2-negative tumor specimens). Targeted next-generation sequencing (NGS) detected novel KCNJ5 gene mutations (p.T148I/T149S, present in the same reads) and a PRKACA gene hotspot mutation (p.L206R) in the CYP11B2-positive and -negative tumors, respectively. Sanger sequencing of DNA from each tumor specimen (CYP11B2-positive tumor, n=3; CYP11B2-negative tumor, n=3) showed concordant results with targeted NGS. CONCLUSION Our findings illustrate the co-existence of two different adrenocortical adenomas causing the concurrent diagnosis of PA and CS in the same patient. Molecular analysis was able to demonstrate that the two diseases resulted from independent somatic mutations seen in double adrenocortical adenomas.

Collaboration


Dive into the Kei Omata's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge