Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keigo Kumagai is active.

Publication


Featured researches published by Keigo Kumagai.


Nature | 2003

Molecular machinery for non-vesicular trafficking of ceramide

Kentaro Hanada; Keigo Kumagai; Satoshi Yasuda; Yukiko Miura; Miyuki Kawano; Masayoshi Fukasawa; Masahiro Nishijima

Synthesis and sorting of lipids are essential for membrane biogenesis; however, the mechanisms underlying the transport of membrane lipids remain little understood. Ceramide is synthesized at the endoplasmic reticulum and translocated to the Golgi compartment for conversion to sphingomyelin. The main pathway of ceramide transport to the Golgi is genetically impaired in a mammalian mutant cell line, LY-A. Here we identify CERT as the factor defective in LY-A cells. CERT, which is identical to a splicing variant of Goodpasture antigen-binding protein, is a cytoplasmic protein with a phosphatidylinositol-4-monophosphate-binding (PtdIns4P) domain and a putative domain for catalysing lipid transfer. In vitro assays show that this lipid-transfer-catalysing domain specifically extracts ceramide from phospholipid bilayers. CERT expressed in LY-A cells has an amino acid substitution that destroys its PtdIns4P-binding activity, thereby impairing its Golgi-targeting function. We conclude that CERT mediates the intracellular trafficking of ceramide in a non-vesicular manner.


Journal of Biological Chemistry | 2006

Efficient Trafficking of Ceramide from the Endoplasmic Reticulum to the Golgi Apparatus Requires a VAMP-associated Protein-interacting FFAT Motif of CERT

Miyuki Kawano; Keigo Kumagai; Masahiro Nishijima; Kentaro Hanada

Ceramide is synthesized at the endoplasmic reticulum (ER) and transported to the Golgi apparatus by CERT for its conversion to sphingomyelin in mammalian cells. CERT has a pleck-strin homology (PH) domain for Golgi targeting and a START domain catalyzing the intermembrane transfer of ceramide. The region between the two domains contains a short peptide motif designated FFAT, which is supposed to interact with the ER-resident proteins VAP-A and VAP-B. Both VAPs were actually co-immunoprecipitated with CERT, and the CERT/VAP interaction was abolished by mutations in the FFAT motif. These mutations did not affect the Golgi targeting activity of CERT. Whereas mutations of neither the FFAT motif nor the PH domain inhibited the ceramide transfer activity of CERT in a cell-free system, they impaired the ER-to-Golgi transport of ceramide in intact and in semi-intact cells at near endogenous expression levels. By contrast, when overexpressed, both the FFAT motif and the PH domain mutants of CERT substantially supported the transport of ceramide from the ER to the site where sphingomyelin is produced. These results suggest that the Golgi-targeting PH domain and ER-interacting FFAT motif of CERT spatially restrict the random ceramide transfer activity of the START domain in cells.


Journal of Biological Chemistry | 2005

CERT mediates intermembrane transfer of various molecular species of ceramides.

Keigo Kumagai; Satoshi Yasuda; Masahiro Nishijima; Shu Kobayashi; Kentaro Hanada

Ceramide produced at the endoplasmic reticulum is transported to the Golgi apparatus for conversion to sphingomyelin. The main pathway of endoplasmic reticulum-to-Golgi transport of ceramide is mediated by CERT, a cytosolic 68-kDa protein, in a nonvesicular manner. CERT contains a domain that catalyzes the intermembrane transfer of natural C16-ceramide. In this study, we examined the ligand specificity of CERT in detail by using a cell-free assay system for intermembrane transfer of lipids. CERT did not mediate the transfer of sphingosine or sphingomyelin at all. The activity of CERT to transfer saturated and unsaturated diacylglycerols, which structurally resemble ceramide, was 5–10% of the activity toward C16-ceramide. Among four stereoisomers of C16-ceramide, CERT specifically recognized the natural d-erythro isomer. CERT efficiently transferred ceramides having C14, C16, C18, and C20 chains, but not longer acyl chains, and also mediated efficient transfer of C16-dihydroceramide and C16-phyto-ceramide. Binding assays showed that CERT also recognizes short chain fluorescent analogs of ceramide with a stoichiometry of 1:1. Moreover, (1R,3R)-N-(3-hydroxy-1-hydroxymethyl-3-phenylpropyl)dodecamide, which inhibited the CERT-dependent pathway of ceramide trafficking in intact cells, was found to be an antagonist of the CERT protein. These results indicate that CERT can mediate transfer of various types of ceramides that naturally exist and their close relatives.


Biochimica et Biophysica Acta | 2009

CERT-mediated trafficking of ceramide.

Kentaro Hanada; Keigo Kumagai; Nario Tomishige; Toshiyuki Yamaji

The transport and sorting of lipids from the sites of their synthesis to their appropriate destinations are fundamental for membrane biogenesis. In the synthesis of sphingolipids in mammalian cells, ceramide is newly produced at the endoplasmic reticulum (ER), and transported from the ER to the trans Golgi regions, where it is converted to sphingomyelin. CERT mediates the ER-to-Golgi trafficking of ceramide. CERT contains several functional domains and motifs including i) a START domain capable of catalyzing inter-membrane transfer of ceramide, ii) a pleckstrin homology domain, which serves to target the Golgi apparatus, iii) a FFAT motif which interacts with the ER-resident membrane protein VAP, and iv) a serine-repeat motif, of which hyperphosphorylation down-regulates CERT activity. It has been suggested that CERT extracts ceramide from the ER and carries it to the Golgi apparatus in a non-vesicular manner and that efficient CERT-mediated trafficking of ceramide occurs at membrane contact sites between the ER and the Golgi apparatus.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Structural basis for specific lipid recognition by CERT responsible for nonvesicular trafficking of ceramide

Norio Kudo; Keigo Kumagai; Nario Tomishige; Toshiyuki Yamaji; Soichi Wakatsuki; Masahiro Nishijima; Kentaro Hanada; Ryuichi Kato

In mammalian cells, ceramide is synthesized in the endoplasmic reticulum and transferred to the Golgi apparatus for conversion to sphingomyelin. Ceramide transport occurs in a nonvesicular manner and is mediated by CERT, a cytosolic 68-kDa protein with a C-terminal steroidogenic acute regulatory protein-related lipid transfer (START) domain. The CERT START domain efficiently transfers natural d-erythro-C16-ceramide, but not lipids with longer (C20) amide-acyl chains. The molecular mechanisms of ceramide specificity, both stereo-specific recognition and length limit, are not well understood. Here we report the crystal structures of the CERT START domain in its apo-form and in complex with ceramides having different acyl chain lengths. In these complex structures, one ceramide molecule is buried in a long amphiphilic cavity. At the far end of the cavity, the amide and hydroxyl groups of ceramide form a hydrogen bond network with specific amino acid residues that play key roles in stereo-specific ceramide recognition. At the head of the ceramide molecule, there is no extra space to accommodate additional bulky groups. The two aliphatic chains of ceramide are surrounded by the hydrophobic wall of the cavity, whose size and shape dictate the length limit for cognate ceramides. Furthermore, local high-crystallographic B-factors suggest that the α-3 and the Ω1 loop might work as a gate to incorporate the ceramide into the cavity. Thus, the structures demonstrate the structural basis for the mechanism by which CERT can distinguish ceramide from other lipid types yet still recognize multiple species of ceramides.


Journal of Biological Chemistry | 2007

Interorganelle Trafficking of Ceramide Is Regulated by Phosphorylation-dependent Cooperativity between the PH and START Domains of CERT

Keigo Kumagai; Miyuki Kawano; Fumiko Shinkai-Ouchi; Masahiro Nishijima; Kentaro Hanada

The synthesis and transport of lipids are essential events for membrane biogenesis. However, little is known about how intracellular trafficking of lipids is regulated. Ceramide is synthesized at the endoplasmic reticulum (ER) and transported by the ceramide transfer protein CERT to the Golgi apparatus, where it is converted to sphingomyelin. CERT has a phosphoinositide-binding pleckstrin homology (PH) domain for Golgi-targeting and a lipid transfer START domain for intermembrane transfer of ceramide. We here show that CERT receives multiple phosphorylations at a serine-repeat motif, a possibe site for casein kinase I, and that the phosphorylation down-regulates the ER-to-Golgi transport of ceramide. In vitro assays show that the phosphorylation induces an autoinhibitory interaction between the PH and START domains and consequently inactivates both the phosphoinositide binding and ceramide transfer activities of CERT. Loss of sphingomyelin and cholesterol from cells causes dephosphorylation of CERT to activate it. The cooperative control of functionally distinct domains of CERT is a novel molecular event to regulate the intracellular trafficking of ceramide.


Iubmb Life | 2008

Two sphingolipid transfer proteins, CERT and FAPP2: Their roles in sphingolipid metabolism

Toshiyuki Yamaji; Keigo Kumagai; Nario Tomishige; Kentaro Hanada

Recent discoveries of two sphingolipid transfer proteins, CERT and FAPP2, have brought the field of sphingolipid metabolism to a more dynamic stage. CERT transfers ceramide from the endoplasmic reticulum (ER) to the Golgi apparatus, a step crucial for sphingomyelin (SM) synthesis. The pleckstrin homology (PH) domain and the FFAT motif of CERT restrict the direction of transfer and destination of ceramide through binding to phosphatidylinositol 4‐monophosphate (PI4P) at the Golgi and the ER resident proteins, VAPs, respectively. CERT is regulated by the phosphorylation and dephosphorylation of serine/threonine, in which protein kinase D, possibly casein kinase I, and PP2Cε are involved. On the other hand, FAPP2 transfers glucosylceramide (GlcCer) to appropriate sites for the synthesis of complex glycosphingolipids. Like CERT, FAPP2 contains a PH domain, the binding of which to PI4P is required for its localization to the Golgi. These observations indicate that lipid transfer proteins, CERT and FAPP2, spatially regulate lipid metabolism on the cytosolic side.


Journal of Biological Chemistry | 2008

Protein Phosphatase 2C∈ Is an Endoplasmic Reticulum Integral Membrane Protein That Dephosphorylates the Ceramide Transport Protein CERT to Enhance Its Association with Organelle Membranes

Satoko Saito; Hiroyuki Matsui; Miyuki Kawano; Keigo Kumagai; Nario Tomishige; Kentaro Hanada; Seishi Echigo; Shinri Tamura; Takayasu Kobayashi

Protein phosphatase 2Cϵ (PP2Cϵ), a mammalian PP2C family member, is expressed in various tissues and is implicated in the negative regulation of stress-activated protein kinase pathways. We show that PP2Cϵ is an endoplasmic reticulum (ER) transmembrane protein with a transmembrane domain at the amino terminus and the catalytic domain facing the cytoplasm. Yeast two-hybrid screening of a human brain library using PP2Cϵ as bait resulted in the isolation of a cDNA that encoded vesicle-associated membrane protein-associated protein A (VAPA). VAPA is an ER resident integral membrane protein involved in recruiting lipid-binding proteins such as the ceramide transport protein CERT to the ER membrane. Expression of PP2Cϵ resulted in dephosphorylation of CERT in a VAPA expression-dependent manner, which was accompanied by redistribution of CERT from the cytoplasm to the Golgi apparatus. The expression of PP2Cϵ also enhanced the association between CERT and VAPA. In addition, knockdown of PP2Cϵ expression by short interference RNA attenuated the interaction between CERT and VAPA and the sphingomyelin synthesis. These results suggest that CERT is a physiological substrate of PP2Cϵ and that dephosphorylation of CERT by PP2Cϵ may play an important role in the regulation of ceramide trafficking from the ER to the Golgi apparatus.


Journal of Molecular Biology | 2010

Crystal structures of the CERT START domain with inhibitors provide insights into the mechanism of ceramide transfer.

Norio Kudo; Keigo Kumagai; Ryosuke Matsubara; Shu Kobayashi; Kentaro Hanada; Soichi Wakatsuki; Ryuichi Kato

The cytosolic protein CERT transfers ceramide from the endoplasmic reticulum to the Golgi apparatus where ceramide is converted to SM. The C-terminal START (steroidogenic acute regulatory protein-related lipid transfer) domain of CERT binds one ceramide molecule in its central amphiphilic cavity. (1R,3R)-N-(3-Hydroxy-1-hydroxymethyl-3-phenylpropyl)alkanamide (HPA), a synthesized analogue of ceramide, inhibits ceramide transfer by CERT. Here we report crystal structures of the CERT START domain in complex with HPAs of varying acyl chain lengths. In these structures, one HPA molecule is buried in the amphiphilic cavity where the amide and hydroxyl groups of HPA form a hydrogen-bond network with specific amino acid residues. The Omega1 loop, which has been suggested to function as a gate of the cavity, adopts a different conformation when bound to HPA than when bound to ceramide. In the Omega1 loop region, Trp473 shows the largest difference between these two structures. This residue exists inside of the cavity in HPA-bound structures, while it is exposed to the outside of the protein in the apo-form and ceramide-bound complex structures. Surface plasmon resonance experiments confirmed that Trp473 is important for interaction with membranes. These results provide insights into not only the molecular mechanism of inhibition by HPAs but also possible mechanisms by which CERT interacts with ceramide.


Journal of Lipid Research | 2007

Sphingomyelin-dependence of cholesterol efflux mediated by ABCG1

Osamu Sano; Aya Kobayashi; Kohjiro Nagao; Keigo Kumagai; Noriyuki Kioka; Kentaro Hanada; Kazumitsu Ueda; Michinori Matsuo

ABCG1, one of the half-type ATP binding cassette (ABC) proteins, mediates the efflux of cholesterol to HDL and functions in the reverse cholesterol transport from peripheral cells to the liver. We have shown that ABCG1 mediates the efflux of not only cholesterol but also sphingomyelin (SM) and phosphatidylcholine. Because SM preferentially associates with cholesterol, we examined whether it plays an important role in the ABCG1-mediated efflux of cholesterol. The efflux of cholesterol and SM mediated by ABCG1 was reduced in a mutant CHO-K1 cell line, LY-A, in which the cellular SM level is reduced because of a mutation of the ceramide transfer protein CERT. In contrast, CHO-K1 cells overexpressing CERT showed an increased efflux of cholesterol and SM mediated by ABCG1. The sensitivity of cells to methyl-β-cyclodextrin suggested that cholesterol in nonraft domains was increased due to the disruption of raft domains in LY-A cells. These results suggest that the ABCG1-mediated efflux of cholesterol and SM is dependent on the cellular SM level and distribution of cholesterol in the plasma membrane.

Collaboration


Dive into the Keigo Kumagai's collaboration.

Top Co-Authors

Avatar

Kentaro Hanada

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Masahiro Nishijima

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Nario Tomishige

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toshiyuki Yamaji

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Daichi Egawa

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Koh Takeuchi

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Toshihiko Sugiki

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge