Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keiichi Irie is active.

Publication


Featured researches published by Keiichi Irie.


Journal of Clinical Investigation | 2005

Cardiac-specific overexpression of AT1 receptor mutant lacking Gαq/Gαi coupling causes hypertrophy and bradycardia in transgenic mice

Peiyong Zhai; Mitsutaka Yamamoto; Jonathan Galeotti; Jing Liu; Malthi Masurekar; Jill Thaisz; Keiichi Irie; Eric Holle; Xianzhong Yu; Sabina Kupershmidt; Dan M. Roden; Thomas Wagner; Atsuko Yatani; Dorothy E. Vatner; Stephen F. Vatner; Junichi Sadoshima

Ang II type 1 (AT1) receptors activate both conventional heterotrimeric G protein-dependent and unconventional G protein-independent mechanisms. We investigated how these different mechanisms activated by AT1 receptors affect growth and death of cardiac myocytes in vivo. Transgenic mice with cardiac-specific overexpression of WT AT1 receptor (AT1-WT; Tg-WT mice) or an AT1 receptor second intracellular loop mutant (AT1-i2m; Tg-i2m mice) selectively activating G(alpha)q/G(alpha)i-independent mechanisms were studied. Tg-i2m mice developed more severe cardiac hypertrophy and bradycardia coupled with lower cardiac function than Tg-WT mice. In contrast, Tg-WT mice exhibited more severe fibrosis and apoptosis than Tg-i2m mice. Chronic Ang II infusion induced greater cardiac hypertrophy in Tg-i2m compared with Tg-WT mice whereas acute Ang II administration caused an increase in heart rate in Tg-WT but not in Tg-i2m mice. Membrane translocation of PKCepsilon, cytoplasmic translocation of G(alpha)q, and nuclear localization of phospho-ERKs were observed only in Tg-WT mice while activation of Src and cytoplasmic accumulation of phospho-ERKs were greater in Tg-i2m mice, consistent with the notion that G(alpha)q/G(alpha)i-independent mechanisms are activated in Tg-i2m mice. Cultured myocytes expressing AT1-i2m exhibited a left and upward shift of the Ang II dose-response curve of hypertrophy compared with those expressing AT1-WT. Thus, the AT1 receptor mediates downstream signaling mechanisms through G(alpha)q/G(alpha)i-dependent and -independent mechanisms, which induce hypertrophy with a distinct phenotype.


Blood | 2010

ADAMTS13 gene deletion aggravates ischemic brain damage: a possible neuroprotective role of ADAMTS13 by ameliorating postischemic hypoperfusion.

Masayuki Fujioka; Kazuhide Hayakawa; Kenichi Mishima; Ai Kunizawa; Keiichi Irie; Sei Higuchi; Takafumi Nakano; Carl Muroi; Hidetada Fukushima; Mitsuhiko Sugimoto; Fumiaki Banno; Koichi Kokame; Toshiyuki Miyata; Michihiro Fujiwara; Kazuo Okuchi; Kenji Nishio

Reperfusion after brain ischemia causes thrombus formation and microcirculatory disturbances, which are dependent on the platelet glycoprotein Ib-von Willebrand factor (VWF) axis. Because ADAMTS13 cleaves VWF and limits platelet-dependent thrombus growth, ADAMTS13 may ameliorate ischemic brain damage in acute stroke. We investigated the effects of ADAMTS13 on ischemia-reperfusion injury using a 30-minute middle cerebral artery occlusion model in Adamts13(-/-) and wild-type mice. After reperfusion for 0.5 hours, the regional cerebral blood flow in the ischemic cortex was decreased markedly in Adamts13(-/-) mice compared with wild-type mice (P < .05), which also resulted in a larger infarct volume after 24 hours for Adamts13(-/-) compared with wild-type mice (P < .01). Thus, Adamts13 gene deletion aggravated ischemic brain damage, suggesting that ADAMTS13 may protect the brain from ischemia by regulating VWF-platelet interactions after reperfusion. These results indicate that ADAMTS13 may be a useful therapeutic agent for stroke.


Journal of Cerebral Blood Flow and Metabolism | 2010

Inhibition of Reactive Astrocytes with Fluorocitrate Retards Neurovascular Remodeling and Recovery after Focal Cerebral Ischemia in Mice

Kazuhide Hayakawa; Takafumi Nakano; Keiichi Irie; Sei Higuchi; Masayuki Fujioka; Kensuke Orito; Katsunori Iwasaki; Guang Jin; Eng H. Lo; Kenichi Mishima; Michihiro Fujiwara

Glial scarring is traditionally thought to be detrimental after stroke. But emerging studies now suggest that reactive astrocytes may also contribute to neurovascular remodeling. Here, we assessed the effects and mechanisms of metabolic inhibition of reactive astrocytes in a mouse model of stroke recovery. Five days after stroke onset, astrocytes were metabolically inhibited with fluorocitrate (FC, 1 nmol). Markers of reactive astrocytes (glial fibrillary acidic protein (GFAP), HMGB1), markers of neurovascular remodeling (CD31, synaptophysin, PSD95), and behavioral outcomes (neuroscore, rotarod latency) were quantified from 1 to 14 days. As expected, focal cerebral ischemia induced significant neurological deficits in mice. But over the course of 14 days after stroke onset, a steady improvement in neuroscore and rotarod latencies were observed as the mice spontaneously recovered. Reactive astrocytes coexpressing GFAP and HMGB1 increased in peri-infarct cortex from 1 to 14 days after cerebral ischemia in parallel with an increase in the neurovascular remodeling markers CD31, synaptophysin, and PSD95. Compared with stroke-only controls, FC-treated mice demonstrated a significant decrease in HMGB1-positive reactive astrocytes and neurovascular remodeling, as well as a corresponding worsening of behavioral recovery. Our results suggest that reactive astrocytes in peri-infarct cortex may promote neurovascular remodeling, and these glial responses may aid functional recovery after stroke.


Brain Research | 2008

Cannabidiol potentiates pharmacological effects of Δ9-tetrahydrocannabinol via CB1 receptor-dependent mechanism

Kazuhide Hayakawa; Kenichi Mishima; Mai Hazekawa; Kazunori Sano; Keiichi Irie; Kensuke Orito; Takashi Egawa; Yoshihisa Kitamura; Naoki Uchida; Ryoji Nishimura; Nobuaki Egashira; Katsunori Iwasaki; Michihiro Fujiwara

Cannabidiol, a non-psychoactive component of cannabis, has been reported to have interactions with Delta(9)-tetrahydrocannabinol (Delta(9)-THC). However, such interactions have not sufficiently been clear and may have important implications for understanding the pharmacological effects of marijuana. In the present study, we investigated whether cannabidiol modulates the pharmacological effects of Delta(9)-THC on locomotor activity, catalepsy-like immobilisation, rectal temperature and spatial memory in the eight-arm radial maze task in mice. In addition, we measured expression level of cannabinoid CB(1) receptor at striatum, cortex, hippocampus and hypothalamus. Delta(9)-THC (1, 3, 6 and 10 mg/kg) induced hypoactivity, catalepsy-like immobilisation and hypothermia in a dose-dependent manner. In addition, Delta(9)-THC (1, 3 and 6 mg/kg) dose-dependently impaired spatial memory in eight-arm radial maze. On the other hand, cannabidiol (1, 3, 10, 25 and 50 mg/kg) did not affect locomotor activity, catalepsy-like immobilisation, rectal temperature and spatial memory on its own. However, higher dose of cannabidiol (10 or 50 mg/kg) exacerbated pharmacological effects of lower dose of Delta(9)-THC, such as hypoactivity, hypothermia and impairment of spatial memory. Moreover, cannabidiol (50 mg/kg) with Delta(9)-THC (1 mg/kg) enhanced the expression level of CB(1) receptor expression in hippocampus and hypothalamus. Cannabidiol potentiated pharmacological effects of Delta(9)-THC via CB(1) receptor-dependent mechanism. These findings may contribute in setting the basis for interaction of cannabinoids and to find a cannabinoid mechanism in central nervous system.


Neuropharmacology | 2008

Cannabidiol prevents a post-ischemic injury progressively induced by cerebral ischemia via a high-mobility group box1-inhibiting mechanism.

Kazuhide Hayakawa; Kenichi Mishima; Keiichi Irie; Mai Hazekawa; Shohei Mishima; Masayuki Fujioka; Kensuke Orito; Nobuaki Egashira; Shutaro Katsurabayashi; Kotaro Takasaki; Katsunori Iwasaki; Michihiro Fujiwara

We examined the cerebroprotective mechanism of cannabidiol, the non-psychoactive component of marijuana, against infarction in a 4-h mouse middle cerebral artery (MCA) occlusion model. Cannabidiol was intraperitoneally administrated immediately before and 3h after cerebral ischemia. Infarct size and myeloperoxidase (MPO) activity, a marker of neutrophil, monocyte/macropharge, were measured at 24h after cerebral ischemia. Activated microglia and astrocytes were evaluated by immunostaining. Moreover, high-mobility group box1 (HMGB1) was also evaluated at 1 and 3 days after MCA occlusion. In addition, neurological score and motor coordination on the rota-rod test were assessed at 1 and 3 days after cerebral ischemia. Cannabidiol significantly prevented infarction and MPO activity at 20h after reperfusion. These effects of cannabidiol were not inhibited by either SR141716 or AM630. Cannabidiol inhibited the MPO-positive cells expressing HMGB1 and also decreased the expression level of HMGB1 in plasma. In addition, cannabidiol decreased the number of Iba1- and GFAP-positive cells at 3 days after cerebral ischemia. Moreover, cannabidiol improved neurological score and motor coordination on the rota-rod test. Our results suggest that cannabidiol inhibits monocyte/macropharge expressing HMGB1 followed by preventing glial activation and neurological impairment induced by cerebral ischemia. Cannabidiol will open new therapeutic possibilities for post-ischemic injury via HMGB1-inhibiting mechanism.


Journal of Neurochemistry | 2007

Delayed treatment with cannabidiol has a cerebroprotective action via a cannabinoid receptor-independent myeloperoxidase- inhibiting mechanism

Kazuhide Hayakawa; Kenichi Mishima; Masanori Nozako; Mai Hazekawa; Keiichi Irie; Masayuki Fujioka; Kensuke Orito; Kohji Abe; Nobuyoshi Hasebe; Nobuaki Egashira; Katsunori Iwasaki; Michihiro Fujiwara

We examined the neuroprotective mechanism of cannabidiol, non‐psychoactive component of marijuana, on the infarction in a 4 h mouse middle cerebral artery (MCA) occlusion model in comparison with Δ9‐tetrahydrocannabinol (Δ9‐THC). Release of glutamate in the cortex was measured at 2 h after MCA occlusion. Myeloperoxidase (MPO) and cerebral blood flow were measured at 1 h after reperfusion. In addition, infarct size and MPO were determined at 24 and 72 h after MCA occlusion. The neuroprotective effect of cannabidiol was not inhibited by either SR141716 or AM630. Both pre‐ and post‐ischemic treatment with cannabidiol resulted in potent and long‐lasting neuroprotection, whereas only pre‐ischemic treatment with Δ9‐THC reduced the infarction. Unlike Δ9‐THC, cannabidiol did not affect the excess release of glutamate in the cortex after occlusion. Cannabidiol suppressed the decrease in cerebral blood flow by the failure of cerebral microcirculation after reperfusion and inhibited MPO activity in neutrophils. Furthermore, the number of MPO‐immunopositive cells was reduced in the ipsilateral hemisphere in cannabidiol‐treated group. Cannbidiol provides potent and long‐lasting neuroprotection through an anti‐inflammatory CB1 receptor‐independent mechanism, suggesting that cannabidiol will have a palliative action and open new therapeutic possibilities for treating cerebrovascular disorders.


Neuroscience | 2008

Δ9-Tetrahydrocannabinol-induced catalepsy-like immobilization is mediated by decreased 5-HT neurotransmission in the nucleus accumbens due to the action of glutamate-containing neurons

Kazunori Sano; Kenichi Mishima; Emi Koushi; Kensuke Orito; Nobuaki Egashira; Keiichi Irie; Kotaro Takasaki; Shutaro Katsurabayashi; Katsunori Iwasaki; Naoki Uchida; Takashi Egawa; Yoshihisa Kitamura; Ryoji Nishimura; Michihiro Fujiwara

Delta(9)-tetrahydrocannabinol (THC) has been reported to induce catalepsy-like immobilization, but the mechanism underlying this effect remains unclear. In the present study, in order to fully understand the neural circuits involved, we determined the brain sites involved in the immobilization effect in rats. THC dose-dependently induced catalepsy-like immobilization. THC-induced catalepsy-like immobilization is mechanistically different from that induced by haloperidol (HPD), because unlike HPD-induced catalepsy, animals with THC-induced catalepsy became normal again following sound and air-puff stimuli. THC-induced catalepsy was reversed by SR141716, a selective cannabinoid CB(1) receptor antagonist. Moreover, THC-induced catalepsy was abolished by lesions in the nucleus accumbens (NAc) and central amygdala (ACE) regions. On the other hand, HPD-induced catalepsy was suppressed by lesions in the caudate putamen (CP), substantia nigra (SN), globus pallidus (GP), ACE and lateral hypothalamus (LH) regions. Bilateral microinjection of THC into the NAc region induced catalepsy-like immobilization. This THC-induced catalepsy was inhibited by serotonergic drugs such as 5-hydroxy-L-tryptophan (5-HTP), a 5-HT precursor, and 5-methoxy-N,N-dimethyltryptamine (5-MeODMT), a 5-HT receptor agonist, as well as by anti-glutamatergic drugs such as MK-801 and amantadine, an N-methyl-d-aspartate (NMDA) receptor antagonist. THC significantly decreased 5-HT and glutamate release in the NAc, as shown by in vivo microdialysis. SR141716 reversed and MK-801 inhibited this decrease in 5-HT and glutamate release. These findings suggest that the THC-induced catalepsy is mechanistically different from HPD-induced catalepsy and that the catalepsy-like immobilization induced by THC is mediated by decreased 5-HT neurotransmission in the nucleus accumbens due to the action of glutamate-containing neurons.


Journal of Colloid and Interface Science | 2013

Bioimaging application of highly luminescent silica-coated ZnO-nanoparticle quantum dots with biotin

Kiyoshi Matsuyama; Neil Ihsan; Keiichi Irie; Kenichi Mishima; Tetsuya Okuyama; Hiroyuki Muto

We synthesized ZnO-nanoparticle quantum dots (QDs) as a fluorescent probe for biological applications. Highly luminescent silica-coated ZnO-nanoparticle QDs dispersed in an aqueous medium were synthesized using the sol-gel process. The ZnO-nanoparticle QDs were coated with silica to improve the water stability of the ZnO nanoparticles. NH2 groups were introduced on the surface of the silica-coated ZnO-nanoparticle QDs first by the addition of 3-aminopropyltrimethoxysilane and then by biotinylation with sulfosuccinimidyl-6-(biotin-amido) hexanoate (sulfo-NHS-LC-bioton). We demonstrated that avidin-immobilized agarose beads were tagged by the silica-coated ZnO-nanoparticle QDs with biotin by the selective avidin-biotin interaction, furnishing a fluorescent image upon excitation with UV light. Furthermore, use of the silica-coated ZnO-nanoparticle QDs with biotin in cell-labeling applications was attempted, and attachment of the silica-coated ZnO-nanoparticle QDs with biotin to nerve cells and actin filaments was achieved.


Journal of Colloid and Interface Science | 2012

Transparent polymeric hybrid film of ZnO nanoparticle quantum dots and PMMA with high luminescence and tunable emission color

Kiyoshi Matsuyama; Kenji Mishima; Takafumi Kato; Keiichi Irie; Kenichi Mishima

ZnO nanoparticle quantum dots (QDs)/poly(methyl methacrylate) (PMMA) composites are synthesized by conventional radical polymerization in the presence of 3-(trimethoxysilyl)propylmethacrylate (TPM)-modified ZnO nanoparticle QDs. Although unmodified ZnO nanoparticle QDs were precipitated in tetrahydrofuran (THF) and show only weak emissions under UV irradiation, ZnO nanoparticle QDs/PMMA composite is well dispersed in THF and shows high emissions. TPM acts as the stabilizer and promotes the compatibility between the ZnO nanoparticle QDs and the PMMA matrix. After evaporation of THF from the ZnO nanoparticle QDs/PMMA composite solution, transparent polymeric hybrid films of ZnO nanoparticle QDs and PMMA are obtained. These polymeric hybrid films are characterized by photoluminescence (PL) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), and thermogravimetric analysis. The hybrid film exhibited a high quantum yield and PL emission under ultraviolet excitation. PL emission has been successfully tuned from blue to yellow.


Brain Research | 2004

Non-NMDA mechanism in the inhibition of cellular apoptosis and memory impairment induced by repeated ischemia in rats

Katsunori Iwasaki; Eun-hee Chung; Nobuaki Egashira; Izzettin Hatip-Al-Khatib; Kenichi Mishima; Takashi Egawa; Keiichi Irie; Michihiro Fujiwara

The spatial memory impairment and expression of apoptotic cells in hippocampal CA1 cells were investigated in rats using single and repeated ischemia models. The neuroprotective and memory-improving effect of YM-90K, an alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) receptor antagonist, was compared to MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist. Twice-repeated ischemia, but not single ischemia, impaired the spatial memory and increased expression of apoptotic cells. YM-90K, given before and 6 h after the second reperfusion, significantly improved the memory and reduced the apoptotic cells 7 days after the second reperfusion in repeated ischemia. MK-801 neither improved the spatial memory nor reduced apoptotic cells. The present study showed that delayed expression of apoptotic cells is mediated by mechanisms involving AMPA receptors, but not by NMDA receptor, during the late phase after reperfusion. YM-90K could provide neuroprotective activity and improve the spatial memory impaired by repeated ischemia.

Collaboration


Dive into the Keiichi Irie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge