Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keiichi Niikura is active.

Publication


Featured researches published by Keiichi Niikura.


Hippocampus | 2011

Hippocampal epigenetic modification at the brain-derived neurotrophic factor gene induced by an enriched environment

Naoko Kuzumaki; Daigo Ikegami; Rie Tamura; Nana Hareyama; Satoshi Imai; Michiko Narita; Kazuhiro Torigoe; Keiichi Niikura; Hideyuki Takeshima; Takayuki Ando; Katsuhide Igarashi; Jun Kanno; Toshikazu Ushijima; Tsutomu Suzuki; Minoru Narita

Environmental enrichment is an experimental paradigm that increases brain‐derived neurotrophic factor (BDNF) gene expression accompanied by neurogenesis in the hippocampus of rodents. In the present study, we investigated whether an enriched environment could cause epigenetic modification at the BDNF gene in the hippocampus of mice. Exposure to an enriched environment for 3–4 weeks caused a dramatic increase in the mRNA expression of BDNF, but not platelet‐derived growth factor A (PDGF‐A), PDGF‐B, vascular endothelial growth factor (VEGF), nerve growth factor (NGF), epidermal growth factor (EGF), or glial fibrillary acidic protein (GFAP), in the hippocampus of mice. Under these conditions, exposure to an enriched environment induced a significant increase in histone H3 lysine 4 (H3K4) trimethylation at the BDNF P3 and P6 promoters, in contrast to significant decreases in histone H3 lysine 9 (H3K9) trimethylation at the BDNF P4 promoter and histone H3 lysine 27 (H3K27) trimethylation at the BDNF P3 and P4 promoters without any changes in the expression of their associated histone methylases and demethylases in the hippocampus. The expression levels of several microRNAs in the hippocampus were not changed by an enriched environment. These results suggest that an enriched environment increases BDNF mRNA expression via sustained epigenetic modification in the mouse hippocampus.


Neuropsychopharmacology | 2008

Usefulness of antidepressants for improving the neuropathic pain-like state and pain-induced anxiety through actions at different brain sites.

Kiyomi Matsuzawa-Yanagida; Minoru Narita; Mayumi Nakajima; Naoko Kuzumaki; Keiichi Niikura; Hiroyuki Nozaki; Tomoe Takagi; Eiko Tamai; Nana Hareyama; Mioko Terada; Mitsuaki Yamazaki; Tsutomu Suzuki

Clinically, it is well known that chronic pain induces depression, anxiety, and a reduced quality of life. There have been many reports on the relationship between pain and emotion. We previously reported that chronic pain induced anxiety with changes in opioidergic function in the central nervous system. In this study, we evaluated the anxiolytic-like effects of several types of antidepressants under a chronic neuropathic pain-like state and searched for the brain site of action where antidepressants show anxiolytic or antinociceptive effects. Sciatic nerve-ligated mice exhibited thermal hyperalgesia and tactile allodynia from days 7 to 28 after nerve ligation. At 4 weeks after ligation, these mice showed a significant anxiety-related behavior in the light–dark test and the elevated plus–maze test. Under these conditions, repeated administration of antidepressants, including the tricyclic antidepressant (TCA) imipramine, the serotonin noradrenaline reuptake inhibitor (SNRI) milnacipran, and the selective serotonin reuptake inhibitor (SSRI) paroxetine, significantly prevented the anxiety-related behaviors induced by chronic neuropathic pain. These antidepressants also produced a significant reduction in thermal hyperalgesia and tactile allodynia. Moreover, the microinjection of paroxetine into the basolateral amygdala or cingulate cortex reduced anxiety-related behavior, and microinjection into the primary somatosensory cortex significantly attenuated thermal hyperalgesia. These findings suggest that serotonergic antidepressants are effective for treating anxiety associated with chronic neuropathic pain and may be useful for treating neuropathic pain with emotional dysfunction such as anxiety. Furthermore, SSRIs show anxiolytic and antinociceptive effects by acting on different brain regions.


Synapse | 2010

Enhanced IL‐1β production in response to the activation of hippocampal glial cells impairs neurogenesis in aged mice

Naoko Kuzumaki; Daigo Ikegami; Satoshi Imai; Michiko Narita; Rie Tamura; Marie Yajima; Atsuo Suzuki; Kazuhiko Miyashita; Keiichi Niikura; Hideyuki Takeshima; Takayuki Ando; Toshikazu Ushijima; Tsutomu Suzuki; Minoru Narita

A variety of mechanisms that contribute to the accumulation of age‐related damage and the resulting brain dysfunction have been identified. Recently, decreased neurogenesis in the hippocampus has been recognized as one of the mechanisms of age‐related brain dysfunction. However, the molecular mechanism of decreased neurogenesis with aging is still unclear. In the present study, we investigated whether aging decreases neurogenesis accompanied by the activation of microglia and astrocytes, which increases the expression of IL‐1β in the hippocampus, and whether in vitro treatment with IL‐1β in neural stem cells directly impairs neurogenesis. Ionized calcium‐binding adaptor molecule 1 (Iba1)‐positive microglia and glial fibrillary acidic protein (GFAP)‐positive astrocytes were increased in the dentate gyrus of the hippocampus of 28‐month‐old mice. Furthermore, the mRNA level of IL‐1β was significantly increased without related histone modifications. Moreover, a significant increase in lysine 9 on histone H3 (H3K9) trimethylation at the promoter of NeuroD (a neural progenitor cell marker) was observed in the hippocampus of aged mice. In vitro treatment with IL‐1β in neural stem cells prepared from whole brain of E14.5 mice significantly increased H3K9 trimethylation at the NeuroD promoter. These findings suggest that aging may decrease hippocampal neurogenesis via epigenetic modifications accompanied by the activation of microglia and astrocytes with the increased expression of IL‐1β in the hippocampus. Synapse 64:721–728, 2010.


Brain | 2013

Epigenetic transcriptional activation of monocyte chemotactic protein 3 contributes to long-lasting neuropathic pain

Satoshi Imai; Daigo Ikegami; Akira Yamashita; Toshikazu Shimizu; Michiko Narita; Keiichi Niikura; Masaharu Furuya; Yasuhisa Kobayashi; Kazuhiko Miyashita; Daiki Okutsu; Akira Kato; Atsushi Nakamura; Akiko Araki; Kazuo Omi; Masaya Nakamura; Hirotaka James Okano; Hideyuki Okano; Takayuki Ando; Hideyuki Takeshima; Toshikazu Ushijima; Naoko Kuzumaki; Tsutomu Suzuki; Minoru Narita

A multiplex analysis for profiling the expression of candidate genes along with epigenetic modification may lead to a better understanding of the complex machinery of neuropathic pain. In the present study, we found that partial sciatic nerve ligation most remarkably increased the expression of monocyte chemotactic protein 3 (MCP-3, known as CCL7) a total of 33 541 genes in the spinal cord, which lasted for 4 weeks. This increase in MCP-3 gene transcription was accompanied by the decreased trimethylation of histone H3 at Lys27 at the MCP-3 promoter. The increased MCP-3 expression associated with its epigenetic modification observed in the spinal cord was almost abolished in interleukin 6 knockout mice with partial sciatic nerve ligation. Consistent with these findings, a single intrathecal injection of recombinant proteins of interleukin 6 significantly increased MCP-3 messenger RNA with a decrease in the level of Lys27 trimethylation of histone H3 at the MCP-3 promoter in the spinal cord of mice. Furthermore, deletion of the C-C chemokine receptor type 2 (CCR2) gene, which encodes a receptor for MCP-3, failed to affect the acceleration of MCP-3 expression in the spinal cord after partial sciatic nerve ligation. A robust increase in MCP-3 protein, which lasted for up to 2 weeks after surgery, in the dorsal horn of the spinal cord of mice with partial sciatic nerve ligation was seen mostly in astrocytes, but not microglia or neurons. On the other hand, the increases in both microglia and astrocytes in the spinal cord by partial sciatic nerve ligation were mostly abolished in interleukin 6 knockout mice. Moreover, this increase in microglia was almost abolished by CCR2 gene deletion, whereas the increase in astrocytes was not affected in nerve-ligated mice that lacked the CCR2 gene. We also found that either in vivo or in vitro treatment with MCP-3 caused robust microglia activation. Under these conditions, intrathecal administration of MCP-3 antibody suppressed the increase in microglia within the mouse spinal cord and neuropathic pain-like behaviours after nerve injury. With the use of a functional magnetic resonance imaging analysis, we demonstrated that a single intrathecal injection of MCP-3 induced dramatic increases in signal intensity in pain-related brain regions. These findings suggest that increased MCP-3 expression associated with interleukin 6 dependent epigenetic modification at the MCP-3 promoter after nerve injury, mostly in spinal astrocytes, may serve to facilitate astrocyte-microglia interaction in the spinal cord and could play a critical role in the neuropathic pain-like state.


Trends in Pharmacological Sciences | 2010

Neuropathic and chronic pain stimuli downregulate central μ -opioid and dopaminergic transmission

Keiichi Niikura; Minoru Narita; Eduardo R. Butelman; Mary Jeanne Kreek; Tsutomu Suzuki

Although morphine and other mu-opioid agonists are the main analgesics for severe pain, these compounds have potential for abuse and/or addiction. This has complicated the use of mu-agonists in the treatment of chronic pain. However, clinical studies show that when mu-agonist analgesics are appropriately used to control pain, actual abuse or addiction does not usually occur, although some risk factors that increase vulnerability need to be considered, including genetic variation. We review recent findings on molecular adaptations in sustained pain models, and propose how these adaptations (including sustained release of the endogenous mu-agonist beta-endorphin) can result in decreased abuse potential of mu-agonists in chronic pain states. We also review data on particular gene polymorphisms (e.g. in the mu-receptor gene) that could also influence the relative abuse potential of mu-agonists in clinical pain populations.


The Journal of Neuroscience | 2005

Protease-Activated Receptor-1 and Platelet-Derived Growth Factor in Spinal Cord Neurons Are Implicated in Neuropathic Pain after Nerve Injury

Minoru Narita; Aiko Usui; Michiko Narita; Keiichi Niikura; Hiroyuki Nozaki; Junaidi Khotib; Yasuyuki Nagumo; Yoshinori Yajima; Tsutomu Suzuki

Recently, it has been reported that both thrombin-sensitive protease-activated receptor 1 (PAR-1) and platelet-derived growth factor (PDGF) are present not only in platelets, but also in the CNS, which indicates that they have various physiological functions. In this study, we evaluated whether PAR-1/PDGF in the spinal cord could contribute to the development of a neuropathic pain-like state in mice. Thermal hyperalgesia and tactile allodynia induced by sciatic nerve ligation were significantly suppressed by repeated intrathecal injection of hirudin, which is characterized as a specific and potent thrombin inhibitor. Furthermore, a single intrathecal injection of thrombin produced long-lasting hyperalgesia and allodynia, and these effects were also inhibited by hirudin in normal mice. In nerveligated mice, the increase in the binding of [35S]GTPγS to membranes of the spinal cord induced by thrombin and PAR-1-like immunoreactivity (IR) in the spinal cord were each greater than those in sham-operated mice. Thermal hyperalgesia and tactile allodynia induced by sciatic nerve ligation were also suppressed by repeated intrathecal injection of either the PDGF α receptor (PDGFRα)/Fc chimera protein or the PDGFR-dependent tyrosine kinase inhibitor AG17 [(3,5-di-tert-butyl-4-hydroxybenzylidene)-malononitrile]. Moreover, thermal hyperalgesia and tactile allodynia induced by thrombin in normal mice were virtually eliminated by intrathecal pretreatment with PDGFRα/Fc. In immunohistochemical studies, PAR-1-like IR-positive cells in the spinal dorsal horn were mostly colocated on PDGF-like IR-positive neuronal cells. These data provide novel evidence that PAR-1 and PDGF-A-mediated signaling pathway within spinal cord neurons may be directly implicated in neuropathic pain after nerve injury in mice.


Neuroscience | 2006

μ-Opioid receptor internalization-dependent and -independent mechanisms of the development of tolerance to μ-opioid receptor agonists: Comparison between etorphine and morphine

Minoru Narita; Masami Suzuki; Keiichi Niikura; Atsushi Nakamura; Mayumi Miyatake; Yoshinori Yajima; Tsutomu Suzuki

A growing body of evidences suggests that receptor desensitization is implicated in the development of tolerance to opioids, which is generally regulated by protein kinases and receptor trafficking proteins. In the present study, we demonstrated that repeated s.c. treatment with etorphine, but not morphine, produced a significant increase in protein levels of G protein-coupled receptor kinase 2, dynamin II, beta-arrestin 2 and phosphorylated-conventional protein kinase C in membranes of the mouse spinal cord, suggesting that the etorphine-induced mu-opioid receptor desensitization may result from G protein-coupled receptor kinase 2/dynaminII/beta-arrestin2-dependent phosphorylation of mu-opioid receptors. Unlike etorphine, morphine failed to change the levels of these trafficking proteins. Furthermore, we found that the level of glial fibrillary acidic protein in the mouse spinal cord was clearly increased by chronic in vivo and in vitro treatment with morphine, whereas no such effect was noted by etorphine. In the behavioral study, intraperitoneal pretreatment with the glial-modulating agent propentofylline suppressed the development of tolerance to morphine-induced antinociception. In addition, intrathecal injection of astrocytes and astrocyte-conditioned medium mixture, which were obtained from cultured astrocytes of the newborn mouse spinal cord, aggravated the development of tolerance to morphine. In contrast, these agents failed to affect the development of tolerance induced by etorphine. These findings provide direct evidence for the distinct mechanisms between etorphine and morphine on the development of tolerance to spinal antinociception. These findings raise the possibility that the increased astroglia response produced by chronic morphine could be associated with the lack of mu-opioid receptor internalization.


Pain | 2011

Sleep disturbances in a neuropathic pain-like condition in the mouse are associated with altered GABAergic transmission in the cingulate cortex

Minoru Narita; Keiichi Niikura; Kana Nanjo-Niikura; Michiko Narita; Masaharu Furuya; Akira Yamashita; Mai Saeki; Yuki Matsushima; Satoshi Imai; Toshikazu Shimizu; Megumi Asato; Naoko Kuzumaki; Daiki Okutsu; Kan Miyoshi; Masami Suzuki; Yoshi Tsukiyama; Michiko Konno; Kinomi Yomiya; Motohiro Matoba; Tsutomu Suzuki

&NA; Insomnia is a common problem for people with chronic pain. Cortical GABAergic neurons are part of the neurobiological substrate that underlies homeostatic sleep regulation. In the present study, we confirmed that sciatic nerve ligation caused thermal hyperalgesia and tactile allodynia in mice. In this experimental model for neuropathic pain, we found an increase in wakefulness and a decrease in non‐rapid eye movement sleep under a neuropathic pain‐like state. Under these conditions, membrane‐bound GABA (γ‐aminobutyric acid) transporters (GATs) on activated glial fibrillary acidic protein‐positive astrocytes were significantly increased in the cingulate cortex, and extracellular GABA levels in this area after depolarization were rapidly decreased by nerve injury. Furthermore, sleep disturbance induced by sciatic nerve ligation was improved by the intracingulate cortex injection of a GAT‐3 inhibitor. These findings provide novel evidence that sciatic nerve ligation decreases extracellular‐released GABA in the cingulate cortex of mice. These phenomena may, at least in part, explain the insomnia in patients with neuropathic pain. Neuropathic pain‐like stimuli suppress the GABAergic transmission with increased GABA (γ‐aminobutyric acid) transporters located on activated astrocytes in the cingulate cortex related to sleep disturbance.


Neuroscience Letters | 2007

Chronic pain-induced astrocyte activation in the cingulate cortex with no change in neural or glial differentiation from neural stem cells in mice

Naoko Kuzumaki; Minoru Narita; Michiko Narita; Nana Hareyama; Keiichi Niikura; Yasuyuki Nagumo; Hiroyuki Nozaki; Taku Amano; Tsutomu Suzuki

Pain pathways terminate in discrete brain areas that monitor the sensory and affective qualities of the initiating stimulus and show remarkable plasticity. Here, we found that chronic pain by sciatic nerve ligation caused a dramatic increase in glial fibrillary acidic protein (GFAP)-like immunoreactivity (IR), which is located in the dendritic astrocytes, with its expanding distribution in the cingulate cortex (CG) of mice. The branched GFAP-like IR in the CG of nerve-ligated mice was overlapped with S100beta-like IR, which is highly limited to the cell body of astrocytes, whereas there was no difference of S100beta-like IR between sham-operated and nerve-ligated mice. The number of BrdU-positive cells on the CG was not changed by sciatic nerve ligation. Furthermore, subventricular zone (SVZ)-derived neural stem cells marked by pEGFP-C1 did not migrate toward the CG after sciatic nerve ligation. In the behavioral assay, the thermal hyperalgesia observed on the ipsirateral side in nerve-ligated mice was significantly suppressed by a single pre-microinjection of a glial-modulating agent propentofylline into the CG 24 h before nerve ligation. These results suggest that chronic painful stimuli induces astrocyte activation in the CG, whereas they do not affect the cell proliferation/differentiation from neural stem cells in the CG and the migration of neural stem cells from the SVZ area. The astrocyte activation in the CG may, at least in part, contribute to the development of a chronic pain-like state following sciatic nerve ligation in mice.


Synapse | 2011

Effects of gabapentin on brain hyperactivity related to pain and sleep disturbance under a neuropathic pain-like state using fMRI and brain wave analysis.

Yoshinori Takemura; Akira Yamashita; Hiroshi Horiuchi; Masaharu Furuya; Makoto Yanase; Keiichi Niikura; Satoshi Imai; Noboru Hatakeyama; Hiroyuki Kinoshita; Yoshi Tsukiyama; Emiko Senba; Motohiro Matoba; Naoko Kuzumaki; Mitsuaki Yamazaki; Tsutomu Suzuki; Minoru Narita

Neuropathic pain is the most difficult pain to manage in the pain clinic, and sleep problems are common among patients with chronic pain including neuropathic pain. In the present study, we tried to visualize the intensity of pain by assessing neuronal activity and investigated sleep disturbance under a neuropathic pain‐like state in mice using functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG)/electromyogram (EMG), respectively. Furthermore, we investigated the effect of gabapentin (GBP) on these phenomena. In a model of neuropathic pain, sciatic nerve ligation caused a marked decrease in the latency of paw withdrawal in response to a thermal stimulus only on the ipsilateral side. Under this condition, fMRI showed that sciatic nerve ligation produced a significant increase in the blood oxygenation level‐dependent (BOLD) signal intensity in the pain matrix, which was significantly decreased 2 h after the i.p. injection of GBP. Based on the results of an EEG/EMG analysis, sciatic nerve‐ligated animals showed a statistically significant increase in wakefulness and a decrease in nonrapid eye movement (NREM) sleep during the light phase, and the sleep disturbance was almost completely alleviated by a higher dose of GBP in nerve‐ligated mice. These findings suggest that neuropathic pain associated with sleep disturbance can be objectively assessed by fMRI and EEG/EMG analysis in animal models. Furthermore, GBP may improve the quality of sleep as well as control pain in patients with neuropathic pain. Synapse 2011.

Collaboration


Dive into the Keiichi Niikura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ann Ho

Rockefeller University

View shared research outputs
Researchain Logo
Decentralizing Knowledge