Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keiichi Ozono is active.

Publication


Featured researches published by Keiichi Ozono.


The Journal of Clinical Endocrinology and Metabolism | 2016

Global Consensus Recommendations on Prevention and Management of Nutritional Rickets

Craig Munns; Nick Shaw; Mairead Kiely; Bonny Specker; Tom D. Thacher; Keiichi Ozono; Toshimi Michigami; Dov Tiosano; M. Zulf Mughal; Outi Mäkitie; Lorna Ramos-Abad; Leanne M. Ward; Linda A. DiMeglio; Navoda Atapattu; Hamilton Cassinelli; Christian Braegger; John M. Pettifor; Anju Seth; Hafsatu Wasagu Idris; Vijayalakshmi Bhatia; Junfen Fu; G R Goldberg; Lars Sävendahl; Rajesh Khadgawat; Pawel Pludowski; Jane Maddock; Elina Hyppönen; Abiola Oduwole; Emma Frew; Magda Aguiar

Background: Vitamin D and calcium deficiencies are common worldwide, causing nutritional rickets and osteomalacia, which have a major impact on health, growth, and development of infants, children, and adolescents; the consequences can be lethal or can last into adulthood. The goals of this evidence-based consensus document are to provide health care professionals with guidance for prevention, diagnosis, and management of nutritional rickets and to provide policy makers with a framework to work toward its eradication. Evidence: A systematic literature search examining the definition, diagnosis, treatment, and prevention of nutritional rickets in children was conducted. Evidence-based recommendations were developed using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) system that describes the strength of the recommendation and the quality of supporting evidence. Process: Thirty-three nominated experts in pediatric endocrinology, pediatrics, nutrition, epidemiology, public health, and health economics evaluated the evidence on specific questions within five working groups. The consensus group, representing 11 international scientific organizations, participated in a multiday conference in May 2014 to reach a global evidence-based consensus. Results: This consensus document defines nutritional rickets and its diagnostic criteria and describes the clinical management of rickets and osteomalacia. Risk factors, particularly in mothers and infants, are ranked, and specific prevention recommendations including food fortification and supplementation are offered for both the clinical and public health contexts. Conclusion: Rickets, osteomalacia, and vitamin D and calcium deficiencies are preventable global public health problems in infants, children, and adolescents. Implementation of international rickets prevention programs, including supplementation and food fortification, is urgently required.


The Journal of Clinical Endocrinology and Metabolism | 2016

Asfotase Alfa Treatment Improves Survival for Perinatal and Infantile Hypophosphatasia

Michael P. Whyte; Cheryl Rockman-Greenberg; Keiichi Ozono; Richard Riese; Scott Moseley; Agustin Melian; David D. Thompson; Nick Bishop; Christine Hofmann

CONTEXTnHypophosphatasia (HPP) is an inborn error of metabolism that, in its most severe perinatal and infantile forms, results in 50-100% mortality, typically from respiratory complications.nnnOBJECTIVESnOur objective was to better understand the effect of treatment with asfotase alfa, a first-in-class enzyme replacement therapy, on mortality in neonates and infants with severe HPP.nnnDESIGN/SETTINGnData from patients with the perinatal and infantile forms of HPP in two ongoing, multicenter, multinational, open-label, phase 2 interventional studies of asfotase alfa treatment were compared with data from similar patients from a retrospective natural history study.nnnPATIENTSnThirty-seven treated patients (median treatment duration, 2.7 years) and 48 historical controls of similar chronological age and HPP characteristics.nnnINTERVENTIONSnTreated patients received asfotase alfa as sc injections either 1 mg/kg six times per week or 2 mg/kg thrice weekly.nnnMAIN OUTCOME MEASURESnSurvival, skeletal health quantified radiographically on treatment, and ventilatory status were the main outcome measures for this study.nnnRESULTSnAsfotase alfa was associated with improved survival in treated patients vs historical controls: 95% vs 42% at age 1 year and 84% vs 27% at age 5 years, respectively (P < .0001, Kaplan-Meier log-rank test). Whereas 5% (1/20) of the historical controls who required ventilatory assistance survived, 76% (16/21) of the ventilated and treated patients survived, among whom 75% (12/16) were weaned from ventilatory support. This better respiratory outcome accompanied radiographic improvements in skeletal mineralization and health.nnnCONCLUSIONSnAsfotase alfa mineralizes the HPP skeleton, including the ribs, and improves respiratory function and survival in life-threatening perinatal and infantile HPP.


American Journal of Human Genetics | 2015

Mutations in MECOM, Encoding Oncoprotein EVI1, Cause Radioulnar Synostosis with Amegakaryocytic Thrombocytopenia.

Tetsuya Niihori; Meri Ouchi-Uchiyama; Yoji Sasahara; Takashi Kaneko; Yoshiko Hashii; Masahiro Irie; Atsushi Sato; Yuka Saito-Nanjo; Ryo Funayama; Takeshi Nagashima; Shin-ichi Inoue; Keiko Nakayama; Keiichi Ozono; Shigeo Kure; Yoichi Matsubara; Masue Imaizumi; Yoko Aoki

Radioulnar synostosis with amegakaryocytic thrombocytopenia (RUSAT) is an inherited bone marrow failure syndrome, characterized by thrombocytopenia and congenital fusion of the radius and ulna. A heterozygous HOXA11 mutation has been identified in two unrelated families as a cause of RUSAT. However, HOXA11 mutations are absent in a number of individuals with RUSAT, which suggests that other genetic loci contribute to RUSAT. In the current study, we performed whole exome sequencing in an individual with RUSAT and her healthy parents and identified a de novo missense mutation in MECOM, encoding EVI1, in the individual with RUSAT. Subsequent analysis of MECOM in two other individuals with RUSAT revealed two additional missense mutations. These three mutations were clustered within the 8(th) zinc finger motif of the C-terminal zinc finger domain of EVI1. Chromatin immunoprecipitation and qPCR assays of the regions harboring the ETS-like motif that is known as an EVI1 binding site showed a reduction in immunoprecipitated DNA for two EVI1 mutants compared with wild-type EVI1. Furthermore, reporter assays showed that MECOM mutations led to alterations in both AP-1- and TGF-β-mediated transcriptional responses. These functional assays suggest that transcriptional dysregulation by mutant EVI1 could be associated with the development of RUSAT. We report missense mutations in MECOM resulting in a Mendelian disorder that provide compelling evidence for the critical role of EVI1 in normal hematopoiesis and in the development of forelimbs and fingers in humans.


Research in Developmental Disabilities | 2016

Sleep problems are more frequent and associated with problematic behaviors in preschoolers with autism spectrum disorder

Ikuko Hirata; Ikuko Mohri; Kumi Kato-Nishimura; Masaya Tachibana; Ayano Kuwada; Kuriko Kagitani-Shimono; Yuko Ohno; Keiichi Ozono; Masako Taniike

BACKGROUNDnChildren with autism spectrum disorder (ASD) often suffer from sleep problems that in turn correlate with behavioral problems. However, in Japan, there have been few studies of sleep problems in children with ASD.nnnAIMSnThis study compared sleep problems in preschoolers from the community and preschoolers with ASD in Japan, and examined whether sleep problems were related to problematic behaviors in ASD preschoolers.nnnMETHODS AND PROCEDURESnSleep problems were assessed in 965 community and 193 ASD preschoolers using the Japanese Sleep Questionnaire for Preschoolers, which was developed to assess sleep problems in Japanese preschoolers. Behavioral problems were assessed in 107 ASD preschoolers using the Child Behavior Checklist.nnnOUTCOMES AND RESULTSnCompared with community preschoolers, ASD preschoolers experienced significantly more sleep problems, including obstructive sleep apnea and parasomnias. ASD preschoolers with sleep problems exhibited more behavioral problems than those without sleep problems. The severity of sleep problems, especially insomnia, was significantly correlated with behavioral problems in ASD preschoolers.nnnCONCLUSIONS AND IMPLICATIONSnThe present study suggests that sleep problems, especially obstructive sleep apnea, are more common in ASD preschoolers than in community preschoolers. The study also shows that sleep problems, especially insomnia, are related to problematic behavior in ASD preschoolers.


Journal of Human Genetics | 2015

Chaperone therapy for Krabbe disease: potential for late-onset GALC mutations

Mohammad Arif Hossain; Katsumi Higaki; Seiji Saito; Kazuki Ohno; Hitoshi Sakuraba; Eiji Nanba; Yoshiyuki Suzuki; Keiichi Ozono; Norio Sakai

Krabbe disease is an autosomal recessive leukodystrophy caused by a deficiency of the galactocerebrosidase (GALC) enzyme. Hematopoietic stem cells transplantation is the only available treatment option for pre-symptomatic patients. We have previously reported the chaperone effect of N-octyl-4-epi-β-valienamine (NOEV) on mutant GM1 β-galactosidase proteins, and in a murine GM1-gangliosidosis model. In this study, we examined its chaperone effect on mutant GALC proteins. We found that NOEV strongly inhibited GALC activity in cell lysates of GALC-transfected COS1 cells. In vitro NOEV treatment stabilized GALC activity under heat denaturation conditions. We also examined the effect of NOEV on cultured COS1 cells expressing mutant GALC activity and human skin fibroblasts from Krabbe disease patients: NOEV significantly increased the enzyme activity of mutants of late-onset forms. Moreover, we confirmed that NOEV could enhance the maturation of GALC precursor to its mature active form. Model structural analysis showed NOEV binds to the active site of human GALC protein. These results, for the first time, provide clear evidence that NOEV is a chaperone with promising potential for patients with Krabbe disease resulting from the late-onset mutations.


Cell Reports | 2016

Systematic Cellular Disease Models Reveal Synergistic Interaction of Trisomy 21 and GATA1 Mutations in Hematopoietic Abnormalities

Kimihiko Banno; Sayaka Omori; Katsuya Hirata; Nobutoshi Nawa; Natsuki Nakagawa; Ken Nishimura; Manami Ohtaka; Mahito Nakanishi; Tetsushi Sakuma; Takashi Yamamoto; Tsutomu Toki; Etsuro Ito; Toshiyuki Yamamoto; Chikara Kokubu; Junji Takeda; Hidetoshi Taniguchi; Hitomi Arahori; Kazuko Wada; Yasuji Kitabatake; Keiichi Ozono

Chromosomal aneuploidy and specific gene mutations are recognized early hallmarks of many oncogenic processes. However, the net effect of these abnormalities has generally not been explored. We focused on transient myeloproliferative disorder (TMD) in Down syndrome, which is characteristically associated with somatic mutations in GATA1. To better understand functional interplay between trisomy 21 and GATA1 mutations in hematopoiesis, we constructed cellular disease models using human induced pluripotent stem cells (iPSCs) and genome-editing technologies. Comparative analysis of these engineered iPSCs demonstrated that trisomy 21 perturbed hematopoietic development through the enhanced production of early hematopoietic progenitors and the upregulation of mutated GATA1, resulting in the accelerated production of aberrantly differentiated cells. These effects were mediated by dosage alterations of RUNX1, ETS2, and ERG, which are located in a critical 4-Mb region of chromosome 21. Our study provides insight into the genetic synergy that contributes to multi-step leukemogenesis.


Journal of Human Genetics | 2015

Rare pseudoautosomal copy-number variations involving SHOX and/or its flanking regions in individuals with and without short stature

Maki Fukami; Yasuhiro Naiki; Koji Muroya; Takashi Hamajima; Shun Soneda; Reiko Horikawa; Tomoko Jinno; Momori Katsumi; Akie Nakamura; Yumi Asakura; Masanori Adachi; Tsutomu Ogata; Susumu Kanzaki; Masahito Adachi; Toshihiro Tajima; Touju Tanaka; Osamu Arisaka; Satomi Koyama; T Hamajima; O Nose; Keiichi Ozono; Noriyuki Namba; Keisuke Nagasaki; Tsutomu Kamimaki; S Kanzaki; Hiroyuki Tanaka; Yukihiro Hasegawa; Kunihiko Kobayashi; Sumito Dateki; Hiroyo Mabe

Pseudoautosomal region 1 (PAR1) contains SHOX, in addition to seven highly conserved non-coding DNA elements (CNEs) with cis-regulatory activity. Microdeletions involving SHOX exons 1–6a and/or the CNEs result in idiopathic short stature (ISS) and Leri–Weill dyschondrosteosis (LWD). Here, we report six rare copy-number variations (CNVs) in PAR1 identified through copy-number analyzes of 245 ISS/LWD patients and 15 unaffected individuals. The six CNVs consisted of three microduplications encompassing SHOX and some of the CNEs, two microduplications in the SHOX 3′-region affecting one or four of the downstream CNEs, and a microdeletion involving SHOX exon 6b and its neighboring CNE. The amplified DNA fragments of two SHOX-containing duplications were detected at chromosomal regions adjacent to the original positions. The breakpoints of a SHOX-containing duplication resided within Alu repeats. A microduplication encompassing four downstream CNEs was identified in an unaffected father–daughter pair, whereas the other five CNVs were detected in ISS patients. These results suggest that microduplications involving SHOX cause ISS by disrupting the cis-regulatory machinery of this gene and that at least some of microduplications in PAR1 arise from Alu-mediated non-allelic homologous recombination. The pathogenicity of other rare PAR1-linked CNVs, such as CNE-containing microduplications and exon 6b-flanking microdeletions, merits further investigation.


European Journal of Pediatrics | 2016

Lethal hypophosphatasia successfully treated with enzyme replacement from day 1 after birth

Yoko Okazaki; Hiroyuki Kitajima; Narutaka Mochizuki; Taichi Kitaoka; Toshimi Michigami; Keiichi Ozono

AbstractHypophosphatasia (HPP) is a rare metabolic bone disease caused by loss-of-function mutations in the gene ALPL encoding the tissue nonspecific alkaline phosphatase (TNSALP). There is a broad range of severity in the phenotype of HPP, and the most severe form exhibits perinatal lethality without mineralization of the skeleton. Here, we describe a female infant with perinatal lethal HPP diagnosed in utero. She was treated with a recombinant ALP (asfotase alfa) as an enzyme replacement therapy (ERT), which started from 1xa0day after birth. She required invasive ventilation immediately upon birth and demonstrated severe hypomineralization of whole body bone. Severe respiratory insufficiency was controlled by intensive respiratory care with high-frequency oscillation ventilation and nitric oxide inhalation and deep sedation just after birth. Bone mineralization improved with treatment; improvements were visible by 3xa0weeks of age and continued with treatment. Serum calcium levels decreased following treatment, resulting in hypocalcemia and convulsion, and calcium supplementation was required until 3xa0months of treatment. She was weaned from mechanical ventilation and has now survived more than 1xa0year.n Conclusion: This case demonstrates the success of ERT in treating the severest HPP and highlights the importance of early diagnosis and intervention for these patients.What is Known:• Severe neonatal hypophosphatasia has high mortality rate and is sometimes called a lethal type.• Enzyme replacement therapy has been developed but its effects on the severest cases are rarely reported.What is New:• This report demonstrates the success of the earliest enzyme replacement therapy in treating perinatal lethal hypophosphatasia and highlights the importance of early diagnosis and respiratory and circulatory support.


International Heart Journal | 2016

Generation of Induced Pluripotent Stem Cells From Patients With Duchenne Muscular Dystrophy and Their Induction to Cardiomyocytes.

Akihito Hashimoto; Atsuhiko T. Naito; Jong-Kook Lee; Rika Kitazume-Taneike; Masamichi Ito; Toshihiro Yamaguchi; Ryo Nakata; Tomokazu Sumida; Katsuki Okada; Akito Nakagawa; Tomoaki Higo; Yuki Kuramoto; Taku Sakai; Koji Tominaga; Takeshi Okinaga; Shigetoyo Kogaki; Keiichi Ozono; Shigeru Miyagawa; Yoshiki Sawa; Yasushi Sakata; Hiroyuki Morita; Akihiro Umezawa; Issei Komuro

Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene which encodes dystrophin protein. Dystrophin defect affects cardiac muscle as well as skeletal muscle. Cardiac dysfunction is observed in all patients with DMD over 18 years of age, but there is no curative treatment for DMD cardiomyopathy. To establish novel experimental platforms which reproduce the cardiac phenotype of DMD patients, here we established iPS cell lines from T lymphocytes donated from two DMD patients, with a protocol using Sendai virus vectors. We successfully conducted the differentiation of the DMD patient-specific iPS cells into beating cardiomyocytes. DMD patient-specific iPS cells and iPS cell-derived cardiomyocytes would be a useful in vitro experimental system with which to investigate DMD cardiomyopathy.


Clinical Pediatric Endocrinology | 2015

Treatment situation of male hypogonadotropic hypogonadism in pediatrics and proposal of testosterone and gonadotropins replacement therapy protocols.

Naoko Sato; Tomonobu Hasegawa; Yukihiro Hasegawa; Osamu Arisaka; Keiichi Ozono; Shin Amemiya; Toru Kikuchi; Hiroyuki Tanaka; Shohei Harada; Ichiro Miyata; Toshiaki Tanaka

Abstract Male hypogonadotropic hypogonadism (MHH), a disorder associated with infertility, is treated with testosterone replacement therapy (TRT) and/or gonadotropins replacement therapy (GRT) (TRT and GRT, together with HRT hormone replacement therapy). In Japan, guidelines have been set for treatment during adolescence. Due to the risk of rapid maturation of bone age, low doses of testosterone or gonadotropins have been used. However, the optimal timing and methods of therapeutic intervention have not yet been established. The objective of this study was to investigate the current situation of treatment for children with MHH in Japan and to review a primary survey involving councilors of the Japanese Society for Pediatric Endocrinology and a secondary survey obtained from 26 facilities conducting HRT. The subjects were 55 patients with MHH who reached their adult height after HRT. The breakdown of the patients is as follows: 7 patients with Kallmann syndrome, 6 patients with isolated gonadotropin deficiency, 18 patients with acquired hypopituitarism due to intracranial and pituitary tumor, 22 patients with classical idiopathic hypopituitarism due to breech delivery, and 2 patients with CHARGE syndrome. The mean age at the start of HRT was 15.7 yrs and mean height was 157.2 cm. The mean age at reaching adult height was 19.4 yrs, and the mean adult height was 171.0 cm. The starting age of HRT was later than the normal pubertal age and showed a significant negative correlation with pubertal height gain, but it showed no correlation with adult height. As for spermatogenesis, 76% of the above patients treated with hCG-rFSH combined therapy showed positive results, though ranging in levels; impaired spermatogenesis was observed in some with congenital MHH, and favorable spermatogenesis was observed in all with acquired MHH. From the above, we propose the establishment of a treatment protocol for the start low-dose testosterone or low-dose gonadotropins by dividing subjects into two groups to determine different treatment protocols, acquired and congenital MHH, and to conduct them at a timing closer to the onset of puberty, namely, at a timing near entrance to junior high school. We also propose a new HRT protocol using preemptive FSH therapy prior to GRT aimed at achieving future fertility in patients with congenital MHH.

Collaboration


Dive into the Keiichi Ozono's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keiko Yamamoto

Kyoto Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge