Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keiichiro Kushiro is active.

Publication


Featured researches published by Keiichiro Kushiro.


Biomacromolecules | 2014

Lectin-Tagged Fluorescent Polymeric Nanoparticles for Targeting of Sialic Acid on Living Cells

Jaebum Cho; Keiichiro Kushiro; Yuji Teramura; Madoka Takai

In this study, we fabricated lectin-tagged fluorescent polymeric nanoparticles approximately 35 nm in diameter using biocompatible polymers conjugated with lectins for the purpose of detecting sialic acid on a living cell surface, which is one of the most important biomarkers for cancer diagnosis. Through cellular experiments, we successfully detected sialic acid overexpression on cancerous cells with high specificity. These fluorescent polymeric nanoparticles can be useful as a potential bioimaging probe for detecting diseased cells.


Acta Biomaterialia | 2014

Effect of the distribution of adsorbed proteins on cellular adhesion behaviors using surfaces of nanoscale phase-reversed amphiphilic block copolymers

Yukari Hiraguchi; Koji Nagahashi; Takashi Shibayama; Tomohiro Hayashi; Taka-aki Yano; Keiichiro Kushiro; Madoka Takai

In order to create suitable biocompatible materials for various tissue engineering applications, it is important to be able to understand protein adsorption and cell adhesion behaviors on the materials surfaces. It is known that the nanoscale distribution of adsorbed proteins affects cell adhesion behaviors. However, how nanoscale structures affect cell adhesion behaviors is still unclear. Therefore, in this study, we investigate the effect of the distribution of adsorbed proteins by the phase reversal of amphiphilic block copolymers composed of protein-non-adsorptive poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) and protein-adsorptive poly(3-methacryloyloxy propyltris(trimethylsilyloxy) silane) (PMPTSSi) on cell adhesion behaviors. The nanodomain structures of phase-separated block copolymers were successfully confirmed using transmission electron microscopy and atomic force microscopy. Surfaces that had PMPC dot-like domains (23 ± 4 nm) and ones that had PMPTSSi dot-like domains (25 ± 6 nm) were made. From protein adsorption and L929 cell adhesion measurements, it was found that even on surfaces with equal quantities of protein adsorption, the number of cells on surfaces with PMPC dot-like domains was larger than those with PMPTSSi dot-like domains. This suggests that the simple phase-reversal of the distribution of adsorbed proteins can be used to affect cell adhesion behaviors for designing biomaterial surfaces for tissue engineering applications.


Angewandte Chemie | 2016

Non-Osmotic Hydrogels: A Rational Strategy for Safely Degradable Hydrogels

Hiroyuki Kamata; Keiichiro Kushiro; Madoka Takai; Ung-il Chung; Takamasa Sakai

Hydrogels are promising materials for biomedical applications, where timely degradation is often preferred. In the conventional design, however, the cleavage of polymer networks essentially causes considerable morphological changes (i.e., degradation-induced swelling), triggering various medical complications. Herein, we report a rational strategy to suppress the degradation-induced swelling based on the synthetic control of the polymer-solvent interaction parameter (χ) of constituent polymer networks. The resultant hydrogels with an optimal χ parameter (χ37 °C ≈0.53; non-osmostic hydrogels) displayed the capability to retain their original shape and degrade without generating significant swelling pressure under physiological conditions (Π37 °C <1 kPa). This concept of the safely degradable non-osmotic hydrogel is theoretically universal, and can be exploited for other types of synthetic hydrogels in various settings.


Langmuir | 2015

Slope-Dependent Cell Motility Enhancements at the Walls of PEG-Hydrogel Microgroove Structures.

Keiichiro Kushiro; Takamasa Sakai; Madoka Takai

In recent years, research utilizing micro- and nanoscale geometries and structures on biomaterials to manipulate cellular behaviors, such as differentiation, proliferation, survival, and motility, have gained much popularity; however, how the surface microtopography of 3D objects, such as implantable devices, can affect these various cell behaviors still remains largely unknown. In this study, we discuss how the walls of microgroove topography can influence the morphology and the motility of unrestrained cells, in a different fashion from 2D line micropatterns. Here adhesive substrates made of tetra(polyethylene glycol) (tetra-PEG) hydrogels with microgroove structures or 2D line micropatterns were fabricated, and cell motility on these substrates was evaluated. Interestingly, despite being unconstrained, the cells exhibited drastically different migration behaviors at the edges of the 2D micropatterns and the walls of microgroove structures. In addition to acquiring a unilamellar morphology, the cells increased their motility by roughly 3-fold on the microgroove structures, compared with the 2D counterpart or the nonpatterned surface. Immunostaining revealed that this behavior was dependent on the alignment and the aggregation of the actin filaments, and by varying the slope of the microgroove walls, it was found that relatively upright walls are necessary for this cell morphology alterations. Further progress in this research will not only deepen our understanding of topography-assisted biological phenomena like cancer metastasis but also enable precise, topography-guided manipulation of cell motility for applications such as cancer diagnosis and cell sorting.


Journal of Physical Chemistry B | 2016

Significant Heterogeneity and Slow Dynamics of the Unfolded Ubiquitin Detected by the Line Confocal Method of Single-Molecule Fluorescence Spectroscopy

Masataka Saito; Supawich Kamonprasertsuk; Satomi Suzuki; Kei Nanatani; Hiroyuki Oikawa; Keiichiro Kushiro; Madoka Takai; Po-Ting Chen; Eric H.-L. Chen; Rita P.-Y. Chen; Satoshi Takahashi

The conformation and dynamics of the unfolded state of ubiquitin doubly labeled regiospecifically with Alexa488 and Alexa647 were investigated using single-molecule fluorescence spectroscopy. The line confocal fluorescence detection system combined with the rapid sample flow enabled the characterization of unfolded proteins at the improved structural and temporal resolutions compared to the conventional single-molecule methods. In the initial stage of the current investigation, however, the single-molecule Förster resonance energy transfer (sm-FRET) data of the labeled ubiquitin were flawed by artifacts caused by the adsorption of samples to the surfaces of the fused-silica flow chip and the sample delivery system. The covalent coating of 2-methacryloyloxyethyl phosphorylcholine polymer to the flow chip surface was found to suppress the artifacts. The sm-FRET measurements based on the coated flow chip demonstrated that the histogram of the sm-FRET efficiencies of ubiquitin at the native condition were narrowly distributed, which is comparable to the probability density function (PDF) expected from the shot noise, demonstrating the structural homogeneity of the native state. In contrast, the histogram of the sm-FRET efficiencies of the unfolded ubiquitin obtained at a time resolution of 100 μs was distributed significantly more broadly than the PDF expected from the shot noise, demonstrating the heterogeneity of the unfolded state conformation. The variety of the sm-FRET efficiencies of the unfolded state remained even after evaluating the moving average of traces with a window size of 1 ms, suggesting that conformational averaging of the heterogeneous conformations mostly occurs in the time domain slower than 1 ms. Local structural heterogeneity around the labeled fluorophores was inferred as the cause of the structural heterogeneity. The heterogeneity and slow dynamics revealed by the line confocal tracking of sm-FRET might be common properties of the unfolded proteins.


Biochimica et Biophysica Acta | 2016

Positive regulation of the enzymatic activity of gastric H(+),K(+)-ATPase by sialylation of its β-subunit.

Takuto Fujii; Midori Watanabe; Takahiro Shimizu; Hiroshi Takeshima; Keiichiro Kushiro; Madoka Takai; Hideki Sakai

The gastric proton pump (H(+),K(+)-ATPase) consists of a catalytic α-subunit (αHK) and a glycosylated β-subunit (βHK). βHK glycosylation is essential for the apical trafficking and stability of αHK in gastric parietal cells. Here, we report the properties of sialic acids at the termini of the oligosaccharide chains of βHK. Sialylation of βHK was found in LLC-PK1 cells stably expressing αHK and βHK by staining of the cells with lectin-tagged fluorescent polymeric nanoparticles. This sialylation was also confirmed by biochemical studies using sialic acid-binding lectin beads and an anti-βHK antibody. The sialic acids of βHK are cleaved enzymatically by neuraminidase (sialidase) and nonenzymatically by an acidic solution (pH5). Interestingly, the enzymatic activity of H(+),K(+)-ATPase was significantly decreased by cleavage of the sialic acids of βHK. In contrast, βHK was not sialylated in the gastric tubulovesicles prepared from the stomach of fed hogs. The H(+),K(+)-ATPase activity in these tubulovesicles was not significantly altered by neuraminidase. Importantly, the sialylation of βHK was observed in the gastric samples prepared from the stomach of famotidine (a histamine H2 receptor antagonist)-treated rats, but not histamine (an acid secretagogue)-treated rats. The enzymatic activity of H(+),K(+)-ATPase in the samples of the famotidine-treated rats was significantly higher than in the histamine-treated rats. The effects of famotidine were weakened by neuraminidase. These results indicate that βHK is sialylated at neutral or weakly acidic pH, but not at acidic pH, suggesting that the sialic acids of βHK positively regulate the enzymatic activity of αHK.


Scientific Reports | 2017

Differences in Three-Dimensional Geometric Recognition by Non-Cancerous and Cancerous Epithelial Cells on Microgroove-Based Topography

Keiichiro Kushiro; Tomohiro Yaginuma; Akihide Ryo; Madoka Takai

During metastasis, cancer cells are exposed to various three-dimensional microstructures within the body, but the relationship between cancer migration and three-dimensional geometry remain largely unclear. Here, such geometric effects on cancerous cells were investigated by characterizing the motility of various cancer cell types on microgroove-based topographies made of polydimethylsiloxane (PDMS), with particular emphasis on distinguishing cancerous and non-cancerous epithelial cells, as well as understanding the underlying mechanism behind such differences. The 90-degree walls enhanced motility for all cell lines, but the degrees of enhancements were less pronounced for the cancerous cells. Interestingly, while the non-cancerous epithelial cell types conformed to the three-dimensional geometrical cues and migrated along the walls, the cancerous cell types exhibited a unique behavior of climbing upright walls, and this was associated with the inability to form stable, polarized actin cytoskeleton along the walls of the microgrooves. Furthermore, when non-cancerous epithelial cell lines were altered to different levels of polarization capabilities and cancer malignancy or treated with inhibitory drugs, their three-dimensional geometry-dependent motility approached those of cancerous cell lines. Overall, the results suggest that cancerous cells may gradually lose geometrical recognition with increasing cancer malignancy, allowing them to roam freely ignoring three-dimensional geometrical cues during metastasis.


Lab on a Chip | 2018

Acoustic formation of multicellular tumor spheroids enabling on-chip functional and structural imaging

Karl Olofsson; Valentina Carannante; Mathias Ohlin; Thomas Frisk; Keiichiro Kushiro; Madoka Takai; Andreas Lundqvist; Björn Önfelt; Martin Wiklund

Understanding the complex 3D tumor microenvironment is important in cancer research. This microenvironment can be modelled in vitro by culturing multicellular tumor spheroids (MCTS). Key challenges when using MCTS in applications such as high-throughput drug screening are overcoming imaging and analytical issues encountered during functional and structural investigations. To address these challenges, we use an ultrasonic standing wave (USW) based MCTS culture platform for parallel formation, staining and imaging of 100 whole MCTS. A protein repellent amphiphilic polymer coating enables flexible production of high quality and unanchored MCTS. This enables high-content multimode analysis based on flow cytometry and in situ optical microscopy. We use HepG2 hepatocellular carcinoma, A498 and ACHN renal carcinoma, and LUTC-2 thyroid carcinoma cell lines to demonstrate (i) the importance of the ultrasound-coating combination, (ii) bright field image based automatic characterization of MTCS, (iii) detailed deep tissue confocal imaging of whole MCTS mounted in a refractive index matching solution, and (iv) single cell functional analysis through flow cytometry of single cell suspensions of disintegrated MTCS. The USW MCTS culture platform is customizable and holds great potential for detailed multimode MCTS analysis in a high-content manner.


Frontiers in Microbiology | 2016

Analysis of the Changes in Expression Levels of Sialic Acid on Influenza-Virus-Infected Cells Using Lectin-Tagged Polymeric Nanoparticles

Jaebum Cho; Yukari Miyake; Ayae Honda; Keiichiro Kushiro; Madoka Takai

Viral infections affect millions around the world, sometimes leading to severe consequences or even epidemics. Understanding the molecular dynamics during viral infections would provide crucial information for preventing or stopping the progress of infections. However, the current methods often involve the disruption of the infected cells or expensive and time-consuming procedures. In this study, fluorescent polymeric nanoparticles were fabricated and used as bioimaging nanoprobes that can monitor the progression of influenza viral infection through the changes in the expression levels of sialic acids expressed on the cell membrane. The nanoparticles were composed of a biocompatible monomer to prevent non-specific interactions, a hydrophobic monomer to form the core, a fluorescent monomer, and a protein-binding monomer to conjugate lectin, which binds sialic acids. It was shown that these lectin-tagged nanoparticles that specifically target sialic acids could track the changes in the expression levels of sialic acids caused by influenza viral infections in human lung epithelial cells. There was a sudden drop in the levels of sialic acid at the initial onset of virus infection (t = 0~1 h) and at approximately 4~5 h post-infection. The latter drop correlated with the production of viral proteins that was confirmed using traditional techniques. Thus, the accuracy, the rapidity and the efficacy of the nanoprobes were demonstrated. Such molecular bioimaging tools, which allow easy-handling and in situ monitoring, would be useful to directly observe and decipher the viral infection mechanisms.


Sensors and Actuators B-chemical | 2015

Polymer brush biointerfaces for highly sensitive biosensors that preserve the structure and function of immobilized proteins

Kenji Takasu; Keiichiro Kushiro; Katsuyoshi Hayashi; Yuzuru Iwasaki; Suzuyo Inoue; Emi Tamechika; Madoka Takai

Collaboration


Dive into the Keiichiro Kushiro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akihide Ryo

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emi Tamechika

Nippon Telegraph and Telephone

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge