Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keiji Ibata is active.

Publication


Featured researches published by Keiji Ibata.


Stem cell reports | 2015

Controlling the Regional Identity of hPSC-Derived Neurons to Uncover Neuronal Subtype Specificity of Neurological Disease Phenotypes.

Kent Imaizumi; Takefumi Sone; Keiji Ibata; Koki Fujimori; Michisuke Yuzaki; Wado Akamatsu; Hideyuki Okano

Summary The CNS contains many diverse neuronal subtypes, and most neurological diseases target specific subtypes. However, the mechanism of neuronal subtype specificity of disease phenotypes remains elusive. Although in vitro disease models employing human pluripotent stem cells (PSCs) have great potential to clarify the association of neuronal subtypes with disease, it is currently difficult to compare various PSC-derived subtypes. This is due to the limited number of subtypes whose induction is established, and different cultivation protocols for each subtype. Here, we report a culture system to control the regional identity of PSC-derived neurons along the anteroposterior (A-P) and dorsoventral (D-V) axes. This system was successfully used to obtain various neuronal subtypes based on the same protocol. Furthermore, we reproduced subtype-specific phenotypes of amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD) by comparing the obtained subtypes. Therefore, our culture system provides new opportunities for modeling neurological diseases with PSCs.


PLOS ONE | 2012

Efficient derivation of multipotent neural stem/progenitor cells from non-human primate embryonic stem cells.

Hiroko Shimada; Yohei Okada; Keiji Ibata; Hayao Ebise; Shin ichi Ota; Ikuo Tomioka; Toshihiro Nomura; Takuji Maeda; Kazuhisa Kohda; Michisuke Yuzaki; Erika Sasaki; Masaya Nakamura; Hideyuki Okano

The common marmoset (Callithrix jacchus) is a small New World primate that has been used as a non-human primate model for various biomedical studies. We previously demonstrated that transplantation of neural stem/progenitor cells (NS/PCs) derived from mouse and human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) promote functional locomotor recovery of mouse spinal cord injury models. However, for the clinical application of such a therapeutic approach, we need to evaluate the efficacy and safety of pluripotent stem cell-derived NS/PCs not only by xenotransplantation, but also allotransplantation using non-human primate models to assess immunological rejection and tumorigenicity. In the present study, we established a culture method to efficiently derive NS/PCs as neurospheres from common marmoset ESCs. Marmoset ESC-derived neurospheres could be passaged repeatedly and showed sequential generation of neurons and astrocytes, similar to that of mouse ESC-derived NS/PCs, and gave rise to functional neurons as indicated by calcium imaging. Although marmoset ESC-derived NS/PCs could not differentiate into oligodendrocytes under default culture conditions, these cells could abundantly generate oligodendrocytes by incorporating additional signals that recapitulate in vivo neural development. Moreover, principal component analysis of microarray data demonstrated that marmoset ESC-derived NS/PCs acquired similar gene expression profiles to those of fetal brain-derived NS/PCs by repeated passaging. Therefore, marmoset ESC-derived NS/PCs may be useful not only for accurate evaluation by allotransplantation of NS/PCs into non-human primate models, but are also applicable to analysis of iPSCs established from transgenic disease model marmosets.


Molecular Brain | 2014

Reprogramming non-human primate somatic cells into functional neuronal cells by defined factors

Zhi Zhou; Kazuhisa Kohda; Keiji Ibata; Jun Kohyama; Wado Akamatsu; Michisuke Yuzaki; Hirotaka James Okano; Erika Sasaki; Hideyuki Okano

BackgroundThe common marmoset (Callithrix jacchus) is a New World primate sharing many similarities with humans. Recently developed technology for generating transgenic marmosets has opened new avenues for faithful recapitulation of human diseases, which could not be achieved in rodent models. However, the longer lifespan of common marmosets compared with rodents may result in an extended period for in vivo analysis of common marmoset disease models. Therefore, establishing rapid and efficient techniques for obtaining neuronal cells from transgenic individuals that enable in vitro analysis of molecular mechanisms underlying diseases are required. Recently, several groups have reported on methods, termed direct reprogramming, to generate neuronal cells by defined factors from somatic cells of various kinds of species, including mouse and human. The aim of the present study was to determine whether direct reprogramming technology was applicable to common marmosets.ResultsCommon marmoset induced neuronal (cjiN) cells with neuronal morphology were generated from common marmoset embryonic skin fibroblasts (cjF) by overexpressing the neuronal transcription factors: ASCL1, BRN2, MYT1L and NEUROD1. Reverse transcription-polymerase chain reaction of cjiN cells showed upregulation of neuronal genes highly related to neuronal differentiation and function. The presence of neuronal marker proteins was also confirmed by immunocytochemistry. Electrical field stimulation to cjiN cells increased the intracellular calcium level, which was reversibly blocked by the voltage-gated sodium channel blocker, tetrodotoxin, indicating that these cells were functional. The neuronal function of these cells was further confirmed by electrophysiological analyses showing that action potentials could be elicited by membrane depolarization in current-clamp mode while both fast-activating and inactivating sodium currents and outward currents were observed in voltage-clamp mode. The 5-bromodeoxyuridine (BrdU) incorporation assay showed that cjiN cells were directly converted from cjFs without passing a proliferative state.ConclusionsFunctional common marmoset neuronal cells can be obtained directly from embryonic fibroblasts by overexpressing four neuronal transcription factors under in vitro conditions. Overall, direct conversion technology on marmoset somatic cells provides the opportunity to analyze and screen phenotypes of genetically-modified common marmosets.


Chemistry: A European Journal | 2013

Development of luminescent coelenterazine derivatives activatable by β-galactosidase for monitoring dual gene expression.

Eric Lindberg; Shin Mizukami; Keiji Ibata; Atsushi Miyawaki; Kazuya Kikuchi

Two bioluminogenic caged coelenterazine derivatives (bGalCoel and bGalNoCoel) were designed and synthesized to detect β-galactosidase activity and expression by means of bioluminescence imaging. Our approach addresses the instability of coelenterazine by introducing β-galactose caging groups to block the auto-oxidation of coelenterazine. Both probes contain β-galactosidase cleavable caging groups at the carbonyl group of the imidazo-pyrazinone moiety. One of the probes in particular, bGalNoCoel, displayed a fast cleavage profile, high stability, and high specificity for β-galactosidase over other glycoside hydrolases. bGalN-oCoel could detect β-galactosidase activity in living HEK-293T cell cultures that expressed a mutant Gaussia luciferase. It was determined that coelenterazine readily diffuses in and out of cells after uncaging by β-galactosidase. We showed that this new caged coelenterazine derivative, bGalNoCoel, could function as a dual-enzyme substrate and detect enzyme activity across two separate cell populations.


Scientific Reports | 2017

Rapid differentiation of human pluripotent stem cells into functional neurons by mRNAs encoding transcription factors

Sravan K. Goparaju; Kazuhisa Kohda; Keiji Ibata; Atsumi Soma; Yukhi Nakatake; Tomohiko Akiyama; Shunichi Wakabayashi; Misako Matsushita; Miki Sakota; Hiromi Kimura; Michisuke Yuzaki; Shigeru B. H. Ko; Minoru S.H. Ko

Efficient differentiation of human pluripotent stem cells (hPSCs) into neurons is paramount for disease modeling, drug screening, and cell transplantation therapy in regenerative medicine. In this manuscript, we report the capability of five transcription factors (TFs) toward this aim: NEUROG1, NEUROG2, NEUROG3, NEUROD1, and NEUROD2. In contrast to previous methods that have shortcomings in their speed and efficiency, a cocktail of these TFs as synthetic mRNAs can differentiate hPSCs into neurons in 7 days, judged by calcium imaging and electrophysiology. They exhibit motor neuron phenotypes based on immunostaining. These results indicate the establishment of a novel method for rapid, efficient, and footprint-free differentiation of functional neurons from hPSCs.


Nature Communications | 2017

Chemical labelling for visualizing native AMPA receptors in live neurons

Sho Wakayama; Shigeki Kiyonaka; Itaru Arai; Wataru Kakegawa; Shinji Matsuda; Keiji Ibata; Yuri L. Nemoto; Akihiro Kusumi; Michisuke Yuzaki; Itaru Hamachi

The location and number of neurotransmitter receptors are dynamically regulated at postsynaptic sites. However, currently available methods for visualizing receptor trafficking require the introduction of genetically engineered receptors into neurons, which can disrupt the normal functioning and processing of the original receptor. Here we report a powerful method for visualizing native α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) which are essential for cognitive functions without any genetic manipulation. This is based on a covalent chemical labelling strategy driven by selective ligand-protein recognition to tether small fluorophores to AMPARs using chemical AMPAR modification (CAM) reagents. The high penetrability of CAM reagents enables visualization of native AMPARs deep in brain tissues without affecting receptor function. Moreover, CAM reagents are used to characterize the diffusion dynamics of endogenous AMPARs in both cultured neurons and hippocampal slices. This method will help clarify the involvement of AMPAR trafficking in various neuropsychiatric and neurodevelopmental disorders.


Chemical Science | 2013

Development of cell-impermeable coelenterazine derivatives

Eric Lindberg; Shin Mizukami; Keiji Ibata; Takashi Fukano; Atsushi Miyawaki; Kazuya Kikuchi

We describe the development of the first cell-membrane impermeable coelenterazine derivative (CoelPhos). CoelPhos was constructed by the alkylation of coelenterazine with a linker containing a terminal anionic phosphonate moiety. The bioluminescence activity of CoelPhos with Gaussia luciferase (GLuc) showed a significantly higher activity in comparison with Renilla luciferase. In imaging studies with living cells, outer membrane bound GLuc was clearly imaged with CoelPhos. On the other hand no signal could be detected with intracellularly localized GLuc, demonstrating the impermeability of this novel coelenterate substrate derivative. CoelPhos has potential utility as a new bioluminogenic tool for the monitoring of dynamic fusion events at the cell–surface interface.


Cephalalgia | 2018

Functional interactions between transient receptor potential M8 and transient receptor potential V1 in the trigeminal system: Relevance to migraine pathophysiology

Yohei Kayama; Mamoru Shibata; Tsubasa Takizawa; Keiji Ibata; Toshihiko Shimizu; Taeko Ebine; Haruki Toriumi; Michisuke Yuzaki; Norihiro Suzuki

Background Recent genome-wide association studies have identified transient receptor potential M8 (TRPM8) as a migraine susceptibility gene. TRPM8 is a nonselective cation channel that mediates cool perception. However, its precise role in migraine pathophysiology is elusive. Transient receptor potential V1 (TRPV1) is a nonselective cation channel activated by noxious heat. Both TRPM8 and TRPV1 are expressed in trigeminal ganglion (TG) neurons. Methods We investigated the functional roles of TRPM8 and TRPV1 in a meningeal inflammation-based migraine model by measuring the effects of facial TRPM8 activation on thermal allodynia and assessing receptor coexpression changes in TG neurons. We performed retrograde tracer labeling to identify TG neurons innervating the face and dura. Results We found that pharmacological TRPM8 activation reversed the meningeal inflammation-induced lowering of the facial heat pain threshold, an effect abolished by genetic ablation of TRPM8. No significant changes in the heat pain threshold were seen in sham-operated animals. Meningeal inflammation caused dynamic alterations in TRPM8/TRPV1 coexpression patterns in TG neurons, and colocalization was most pronounced when the ameliorating effect of TRPM8 activation on thermal allodynia was maximal. Our tracer assay disclosed the presence of dura-innervating TG neurons sending collaterals to the face. Approximately half of them were TRPV1-positive. We also demonstrated functional inhibition of TRPV1 by TRPM8 in a cell-based assay using c-Jun N-terminal kinase phosphorylation as a surrogate marker. Conclusions Our findings provide a plausible mechanism to explain how facial TRPM8 activation can relieve migraine by suppressing TRPV1 activity. Facial TRPM8 appears to be a promising therapeutic target for migraine.


Journal of Neuroscience Research | 2017

Novel luciferase–opsin combinations for improved luminopsins

Sung Young Park; Sang-Ho Song; Brandon Palmateer; Akash Pal; Eric D. Petersen; Gabrielle P. Shall; Ryan M. Welchko; Keiji Ibata; Atsushi Miyawaki; George J. Augustine; Ute Hochgeschwender

Previous work has demonstrated that fusion of a luciferase to an opsin, to create a luminescent opsin or luminopsin, provides a genetically encoded means of manipulating neuronal activity via both chemogenetic and optogenetic approaches. Here we have expanded and refined the versatility of luminopsin tools by fusing an alternative luciferase variant with high light emission, Gaussia luciferase mutant GLucM23, to depolarizing and hyperpolarizing channelrhodopsins with increased light sensitivity. The combination of GLucM23 with Volvox channelrhodopsin‐1 produced LMO4, while combining GLucM23 with the anion channelrhodopsin iChloC yielded iLMO4. We found efficient activation of these channelrhodopsins in the presence of the luciferase substrate, as indicated by responses measured in both single neurons and in neuronal populations of mice and rats, as well as by changes in male rat behavior during amphetamine‐induced rotations. We conclude that these new luminopsins will be useful for bimodal opto‐ and chemogenetic analyses of brain function.


Biochemical and Biophysical Research Communications | 2017

Neural differentiation of human embryonic stem cells induced by the transgene-mediated overexpression of single transcription factors

Misako Matsushita; Yuhki Nakatake; Itaru Arai; Keiji Ibata; Kazuhisa Kohda; Sravan K. Goparaju; Miyako Murakami; Miki Sakota; Nana Chikazawa-Nohtomi; Shigeru B. H. Ko; Takanori Kanai; Michisuke Yuzaki; Minoru S.H. Ko

Pluripotent human embryonic stem cells (hESCs) can differentiate into multiple cell lineages, thus, providing one of the best platforms to study molecular mechanisms during cell differentiation. Recently, we have reported rapid and efficient differentiation of hESCs into functional neurons by introducing a cocktail of synthetic mRNAs encoding five transcription factors (TFs): NEUROG1, NEUROG2, NEUROG3, NEUROD1, and NEUROD2. Here we further tested a possibility that even single transcription factors, when expressed ectopically, can differentiate hESCs into neurons. To this end, we established hESC lines in which each of these TFs can be overexpressed by the doxycycline-inducible piggyBac vector. The overexpression of any of these five TFs indeed caused a rapid and rather uniform differentiation of hESCs, which were identified as neurons based on their morphologies, qRT-PCR, and immunohistochemistry. Furthermore, calcium-imaging analyses and patch clamp recordings demonstrated that these differentiated cells are electrophysiologically functional. Interestingly, neural differentiations occurred despite the cell culture conditions that rather promote the maintenance of the undifferentiated state. These results indicate that over-expression of each of these five TFs can override the pluripotency-specific gene network and force hESCs to differentiate into neurons.

Collaboration


Dive into the Keiji Ibata's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Atsushi Miyawaki

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erika Sasaki

Central Institute for Experimental Animals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge