Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keiko Fujikawa is active.

Publication


Featured researches published by Keiko Fujikawa.


Nature Medicine | 2005

Vav3 regulates osteoclast function and bone mass

Roberta Faccio; Steven L. Teitelbaum; Keiko Fujikawa; Jean Chappel; Alberta Zallone; Victor L. J. Tybulewicz; F. Patrick Ross; Wojciech Swat

Osteoporosis, a leading cause of morbidity in the elderly, is characterized by progressive loss of bone mass resulting from excess osteoclastic bone resorption relative to osteoblastic bone formation. Here we identify Vav3, a Rho family guanine nucleotide exchange factor, as essential for stimulated osteoclast activation and bone density in vivo. Vav3-deficient osteoclasts show defective actin cytoskeleton organization, polarization, spreading and resorptive activity resulting from impaired signaling downstream of the M-CSF receptor and αvβ3 integrin. Vav3-deficient mice have increased bone mass and are protected from bone loss induced by systemic bone resorption stimuli such as parathyroid hormone or RANKL. Moreover, we provide genetic and biochemical evidence for the role of Syk tyrosine kinase as a crucial upstream regulator of Vav3 in osteoclasts. Thus, Vav3 is a potential new target for antiosteoporosis therapy.


Journal of Experimental Medicine | 2003

Vav1/2/3-null mice define an essential role for Vav family proteins in lymphocyte development and activation but a differential requirement in MAPK signaling in T and B cells.

Keiko Fujikawa; Ana V. Miletic; Frederick W. Alt; Roberta Faccio; Tracie Brown; Jeremy Hoog; Jessica Fredericks; Shinzo Nishi; Shirly Mildiner; Sheri L. Moores; Joan S. Brugge; Fred S. Rosen; Wojciech Swat

The Vav family of Rho guanine nucleotide exchange factors is thought to orchestrate signaling events downstream of lymphocyte antigen receptors. Elucidation of Vav function has been obscured thus far by the expression of three highly related family members. We generated mice lacking all Vav family proteins and show that Vav-null mice produce no functional T or B cells and completely fail to mount both T-dependent and T-independent humoral responses. Whereas T cell development is blocked at an early stage in the thymus, immature B lineage cells accumulate in the periphery but arrest at a late “transitional” stage. Mechanistically, we show that the Vav family is crucial for both TCR and B cell receptor (BCR)–induced Ca2+ signaling and, surprisingly, is only required for mitogen-activated protein kinase (MAPK) activation in developing and mature T cells but not in B cells. Thus, the abundance of immature B cells generated in Vav-null mice may be due to intact Ras/MAPK signaling in this lineage. Although the expression of Vav1 alone is sufficient for normal lymphocyte development, our data also reveal lineage-specific roles for Vav2 and Vav3, with the first demonstration that Vav3 plays a critical compensatory function in T cells. Together, we define an essential role for the entire Vav protein family in lymphocyte development and activation and establish the limits of functional redundancy both within this family and between Vav and other Rho–guanine nucleotide exchange factors.


Molecular and Cellular Biology | 2000

Vav Family Proteins Couple to Diverse Cell Surface Receptors

Sheri L. Moores; Laura M. Selfors; Jessica Fredericks; Timo M. Breit; Keiko Fujikawa; Frederick W. Alt; Joan S. Brugge; Wojciech Swat

ABSTRACT Vav proteins are guanine nucleotide exchange factors for Rho family GTPases which activate pathways leading to actin cytoskeletal rearrangements and transcriptional alterations. Vav proteins contain several protein binding domains which can link cell surface receptors to downstream signaling proteins. Vav1 is expressed exclusively in hematopoietic cells and tyrosine phosphorylated in response to activation of multiple cell surface receptors. However, it is not known whether the recently identified isoforms Vav2 and Vav3, which are broadly expressed, can couple with similar classes of receptors, nor is it known whether all Vav isoforms possess identical functional activities. We expressed Vav1, Vav2, and Vav3 at equivalent levels to directly compare the responses of the Vav proteins to receptor activation. Although each Vav isoform was tyrosine phosphorylated upon activation of representative receptor tyrosine kinases, integrin, and lymphocyte antigen receptors, we found unique aspects of Vav protein coupling in each receptor pathway. Each Vav protein coprecipitated with activated epidermal growth factor and platelet-derived growth factor (PDGF) receptors, and multiple phosphorylated tyrosine residues on the PDGF receptor were able to mediate Vav2 tyrosine phosphorylation. Integrin-induced tyrosine phosphorylation of Vav proteins was not detected in nonhematopoietic cells unless the protein tyrosine kinase Syk was also expressed, suggesting that integrin activation of Vav proteins may be restricted to cell types that express particular tyrosine kinases. In addition, we found that Vav1, but not Vav2 or Vav3, can efficiently cooperate with T-cell receptor signaling to enhance NFAT-dependent transcription, while Vav1 and Vav3, but not Vav2, can enhance NFκB-dependent transcription. Thus, although each Vav isoform can respond to similar cell surface receptors, there are isoform-specific differences in their activation of downstream signaling pathways.


Journal of Experimental Medicine | 2004

Differential Requirements for Vav Proteins in DAP10- and ITAM-mediated NK Cell Cytotoxicity

Marina Cella; Keiko Fujikawa; Ilaria Tassi; Sunjin Kim; Kevin Latinis; Shinzo Nishi; Wayne M. Yokoyama; Marco Colonna; Wojciech Swat

Natural killer (NK) cells express multiple activating receptors that initiate signaling cascades through DAP10- or immunoreceptor tyrosine-based activation motif–containing adapters, including DAP12 and FcRγ. Among downstream signaling mediators, the guanine nucleotide exchange factor Vav1 carries out a key role in activation. However, whether Vav1 regulates only some or all NK cell–activating pathways is matter of debate. It is also possible that two other Vav family molecules, Vav2 and Vav3, are involved in NK cell activation. Here, we examine the relative contribution of each of these exchange factors to NK cell–mediated cytotoxicity using mice lacking one, two, or all three Vav proteins. We found that Vav1 deficiency is sufficient to disrupt DAP10-mediated cytotoxicity, whereas lack of Vav2 and Vav3 profoundly impairs FcRγ- and DAP12-mediated cytotoxicity. Our results provide evidence that these three Vav proteins function specifically in distinct pathways that trigger NK cell cytotoxicity.


Journal of Immunology | 2006

Vav1 Controls DAP10-Mediated Natural Cytotoxicity by Regulating Actin and Microtubule Dynamics

Daniel B. Graham; Marina Cella; Emanuele Giurisato; Keiko Fujikawa; Ana V. Miletic; Tracie Kloeppel; Karry L. Brim; Toshiyuki Takai; Andrey S. Shaw; Marco Colonna; Wojciech Swat

The NK cell-activating receptor NKG2D recognizes several MHC class I-related molecules expressed on virally infected and tumor cells. Human NKG2D transduces activation signals exclusively via an associated DAP10 adaptor containing a YxNM motif, whereas murine NKG2D can signal through either DAP10 or the DAP12 adaptor, which contains an ITAM sequence. DAP10 signaling is thought to be mediated, at least in part, by PI3K and is independent of Syk/Zap-70 kinases; however, the exact mechanism by which DAP10 induces natural cytotoxicity is incompletely understood. Herein, we identify Vav1, a Rho GTPase guanine nucleotide exchange factor, as a critical signaling mediator downstream of DAP10 in NK cells. Specifically, using mice deficient in Vav1 and DAP12, we demonstrate an essential role for Vav1 in DAP10-induced NK cell cytoskeletal polarization involving both actin and microtubule networks, maturation of the cytolytic synapse, and target cell lysis. Mechanistically, we show that Vav1 interacts with DAP10 YxNM motifs through the adaptor protein Grb2 and is required for activation of PI3K-dependent Akt signaling. Based on these findings, we propose a novel model of ITAM-independent signaling by Vav downstream of DAP10 in NK cells.


Immunity | 1998

SEK1/MKK4 is required for maintenance of a normal peripheral lymphoid compartment but not for lymphocyte development.

Wojciech Swat; Keiko Fujikawa; Soula Ganiatsas; Di Yang; Ramnik J. Xavier; Nancy Lee Harris; Laurie Davidson; Roger Ferrini; Roger J. Davis; Mark Labow; Richard A. Flavell; Leonard I. Zon; Frederick W. Alt

SAPK is a member of the group of evolutionary conserved stress-activated kinases that mediate control of cellular death and proliferation. In lymphocytes, the SAPK pathway has been implicated in signaling from antigen, costimulatory, and death receptors; SEK1, which directly activates SAPK, is required for early embryonic development and has also been reported to be essential for normal lymphocyte development. In contrast to the latter findings, we have used RAG-2-deficient blastocyst complementation to show that SEK1-deficient embryonic stem cells support unimpaired T and B lymphocyte development. Moreover, mature SEK1-deficient lymphocytes are capable of SAPK activation. Surprisingly, however, aging SEK1-deficient chimeric mice frequently develop lymphadenopathy and polyclonal B and T cell expansions. Thus, SEK1 is not required for lymphocyte development, but is required for maintaining peripheral lymphoid homeostasis.


Journal of Experimental Medicine | 2007

An ITAM-signaling pathway controls cross- presentation of particulate but not soluble antigens in dendritic cells

Daniel B. Graham; Linda M. Stephenson; Siu Kit Lam; Karry L. Brim; Hyang Mi Lee; Jhoanne Bautista; Susan Gilfillan; Shreeram Akilesh; Keiko Fujikawa; Wojciech Swat

Dendritic cells (DC) possess a unique capacity for presenting exogenous antigen on major histocompatibility class I, a process that is referred to as cross-presentation, which serves a critical role in microbial and tumor immunity. During cross-presentation, antigens derived from pathogen-infected or tumor cells are internalized and processed by DCs for presentation to cytotoxic T lymphocytes (CTLs). We demonstrate that a signaling pathway initiated by the immunoreceptor tyrosine–based activation motif (ITAM)–containing adaptors DAP12 and FcRγ utilizes the Vav family of Rho guanine nucleotide exchange factors (GEFs) for processing and cross-presentation of particulate, but not soluble, antigens by DCs. Notably, this novel pathway is crucial for processing and presentation of particulate antigens, such as those associated with Listeria monocytogenes bacteria, yet it is not required for antigen uptake. Mechanistically, we provide evidence that in DCs, Vav GEFs are essential to link ITAM-dependent receptors with the activation of the NOX2 complex and production of reactive oxygen species (ROS), which regulate phagosomal pH and processing of particulate antigens for cross-presentation. Importantly, we show that genetic disruption of the DAP12/FcRγ–Vav pathway leads to antigen presentation defects that are more profound than in DCs lacking NOX2, suggesting that ITAM signaling also controls cross-presentation in a ROS-independent manner.


Immunologic Research | 2005

The Vav family: at the crossroads of signaling pathways.

Wojciech Swat; Keiko Fujikawa

The Vav family of Rho-guanine nucleotide exchange factors (GEFs) is thought to control a diverse array of signaling pathways emanating from antigen receptors in lymphocytes, although the exact mechanism by which Vav exerts its function is only beginning to emerge. Vav proteins are modular and contain the Dbl-homology domain, typical of all known Rho-GEFs, in addition to several other structural domains characteristic of proteins involved in signal transduction. Recently, our laboratory generated mice congenitally lacking all three Vav isoforms, providing genetic evidence that the Vav family is critical and nonredundant in T-and B-lymphocyte development and function and is essential in the formation of the adaptive immune system. These experimental also demonstrated that Vav proteins are indispensable for both T-cell receptor—and B-cell receptr-induced Ca++ fluxes. However, detailed analyses of Vav-deficient mice revealed unexpected complexity of Vav involvement in cellular activation. Notably, we observed lineage-specific Vav regulation of mitogen-activated protein kinase signaling, in which Vav was required in T-cell, but not in B-cells. Moreover, the three Vav proteins appear to function specifically in distinct signaling pathways emanating from activating receptors of natural killer cells that trigger natural cytotoxicity.


PLOS ONE | 2010

VAV2 and VAV3 as Candidate Disease Genes for Spontaneous Glaucoma in Mice and Humans

Keiko Fujikawa; Takeshi Iwata; Kaoru Inoue; Masakazu Akahori; Hanako Kadotani; Masahiro Fukaya; Masahiko Watanabe; Qing Chang; Edward M. Barnett; Wojciech Swat

Background Glaucoma is a leading cause of blindness worldwide. Nonetheless, the mechanism of its pathogenesis has not been well-elucidated, particularly at the molecular level, because of insufficient availability of experimental genetic animal models. Methodology/Principal Findings Here we demonstrate that deficiency of Vav2 and Vav3, guanine nucleotides exchange factors for Rho guanosine triphosphatases, leads to an ocular phenotype similar to human glaucoma. Vav2/Vav3-deficient mice, and to a lesser degree Vav2-deficient mice, show early onset of iridocorneal angle changes and elevated intraocular pressure, with subsequent selective loss of retinal ganglion cells and optic nerve head cupping, which are the hallmarks of glaucoma. The expression of Vav2 and Vav3 tissues was demonstrated in the iridocorneal angle and retina in both mouse and human eyes. In addition, a genome-wide association study screening glaucoma susceptibility loci using single nucleotide polymorphisms analysis identified VAV2 and VAV3 as candidates for associated genes in Japanese open-angle glaucoma patients. Conclusions/Significance Vav2/Vav3-deficient mice should serve not only as a useful murine model of spontaneous glaucoma, but may also provide a valuable tool in understanding of the pathogenesis of glaucoma in humans, particularly the determinants of altered aqueous outflow and subsequent elevated intraocular pressure.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Vav3 is regulated during the cell cycle and effects cell division

Keiko Fujikawa; Yoshiro Inoue; Masaharu Sakai; Yoshikazu Koyama; Shinzo Nishi; Ryo Funada; Frederick W. Alt; Wojciech Swat

Vav3 is a member of the family of guanine nucleotide exchange factors implicated in the regulation of Rho GTPases. Although the exact in vivo function of Vav3 is unknown, evidence from several studies indicates a role distinct from Vav2 or Vav1. Here we report that the expression of Vav3 is regulated during the cell cycle. Strikingly, Vav3 was transiently up-regulated in HeLa cells during mitosis, whereas enforced expression of Vav3 perturbed cytokinesis and led to the appearance of multinucleated cells. These effects of Vav3 were RhoA-dependent, required phosphorylation of the regulatory tyrosine 173, but were not enhanced by N-terminal truncations. Thus, this report establishes that expression of Vav3 is strictly regulated in a cell cycle-dependent manner and implicates Vav3 in the control of cytokinesis.

Collaboration


Dive into the Keiko Fujikawa's collaboration.

Top Co-Authors

Avatar

Wojciech Swat

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frederick W. Alt

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge