Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keiko Ikeda is active.

Publication


Featured researches published by Keiko Ikeda.


International Journal of Molecular Medicine | 2011

Inhibition of multiplication of herpes simplex virus by caffeic acid

Keiko Ikeda; Kazuko Tsujimoto; Misao Uozaki; Mitsunori Nishide; Yukiko Suzuki; A. Hajime Koyama; Hisashi Yamasaki

Hot water extracts of coffee grinds and commercial instant coffee solutions have been shown to exhibit marked antiviral and virucidal activities against herpes simplex virus type 1 (HSV-1). Specifically, it has been shown that caffeine and N-methyl-pyridinium formate inhibit the multiplication of HSV-1 in HEp-2 cells. The present study examined the virological properties and the antiviral activity of caffeic acid against HSV-1. Caffeic acid inhibited the multiplication of HSV-1 in vitro, while chlorogenic acid, a caffeic acid ester with quinic acid, did not. These reagents did not have a direct virucidal effect. The one-step growth curve of HSV-1 showed that the addition of caffeic acid at 8 h post infection (h p.i.) did not significantly affect the formation of progeny viruses. An analysis of the influence of the time of caffeic acid addition, revealed that addition at an early time post infection remarkably inhibited the formation of progeny infectious virus in the infected cells, but its addition after 6 h p.i. (i.e., the time of the completion of viral genome replication) did not efficiently inhibit this process. These results indicate that caffeic acid inhibits HSV-1 multiplication mainly before the completion of viral DNA replication, but not thereafter. Although caffeic acid showed some cytotoxicity by prolonged incubation, the observed antiviral activity is likely not the secondary result of the cytotoxic effect of the reagent, because the inhibition of the virus multiplication was observed before appearance of the notable cytotoxicity.


Current Medicinal Chemistry | 2009

Antiviral and Virucidal Activities of Natural Products

Tsutomu Arakawa; Hisashi Yamasaki; Keiko Ikeda; Daisuke Ejima; Takeshi Naito; A. Hajime Koyama

Virus infection is one of the major threats to human health and can be avoided by minimizing exposure to infectious viruses. Viral clearance of pharmaceutical products and sanitization of skin and mucosal surfaces would reduce such exposures. Even with such care, virus infection does occur, requiring effective treatments by antiviral or virucidal agents. Natural products, in particular ingredients of foods and drinks we normally consume or metabolites present in human body at low concentrations, would have advantage over synthetic drugs as antiviral agents for safety concerns. For this reason, we have been studying natural products for their effects on virus inactivation and growth. Such natural products, which we have been focusing, include gallate derivatives, caffeine present in coffee, caffeic acid present in coffee and various fruits, ascorbic and dehydroascorbic acids and a cell metabolite, arginine. Here we will review our work on antiviral and virucidal activities of these compounds and the mechanism of their antiviral and virucidal effects.


International Journal of Molecular Medicine | 2014

Inhibition by caffeic acid of the influenza A virus multiplication in vitro

Hirotoshi Utsunomiya; Masao Ichinose; Keiko Ikeda; Misao Uozaki; Junko Morishita; Tomomi Kuwahara; A. Hajime Koyama; Hisashi Yamasaki

Caffeic acid has been shown to inhibit the multiplication of influenza A virus in vitro, whereas caffeine, quinic acid and chlorogenic acid do not. Caffeic acid has also been shown to have antiviral activity against herpes simplex virus (DNA virus) and polio virus (RNA virus). In the present study, a comparison of the one-step growth curve of the influenza virus in the presence of caffeic acid with that in the absence of the reagent showed that an eclipse period of the virus multiplication in the infected cells was not affected by the reagent, while the progeny virus yield was markedly decreased in the presence of caffeic acid. In additional experiments, it was found that the addition of caffeic acid at an early time point post-infection (within 3 h post-infection) was mandatory for extensive antiviral activity, suggesting that a major target of the reagent exists in the early stages of infection. Simultaneously with the decrease in the progeny virus yield, both the virus-induced cytopathic effects and apoptotic nuclear fragmentation were markedly suppressed by the reagent, suggesting that caffeic acid suppresses, at least temporally, the degeneration of the virus-infected cells and that the observed antiviral activity is likely not the secondary result of the cytotoxic effects of the reagent. These results suggest the potential pharmacological use of caffeic acid or its derivatives as an antiviral drug against influenza A virus.


International Journal of Molecular Medicine | 2012

Arginine inactivates human herpesvirus 2 and inhibits genital herpesvirus infection

Keiko Ikeda; Hisashi Yamasaki; Sawako Minami; Yukiko Suzuki; Kazuko Tsujimoto; Yoshihisa Sekino; Hiroshi Irie; Tsutomu Arakawa; A. Hajime Koyama

Arginine, among the amino acids, has demonstrated unique properties, including suppression of protein-protein interactions and virus inactivation. We investigated the effects of arginine on the infectivity of human herpesvirus 2 (HHV-2) and the potential application of arginine as a chemotherapeutic agent against genital herpes. Arginine directly inactivated HHV-2 and characterization of the inactivation demonstrated that 1 M arginine at pH 4.3 inactivated the virus more efficiently compared to 0.1 M citrate or 1 M sodium chloride, indicating that neither acidic pH nor ionic strength alone is sufficient for virus inactivation. The effect of arginine was rapid and concentration-dependent. Although virus inactivation was efficient at an acidic pH, arginine inactivated the virus even at a neutral pH, provided that a higher arginine concentration and prolonged incubation time were used. In addition, arginine suppressed the multiplication of HHV-2 under the conditions at which its effect on cell viability was insignificant. Pilot mouse model studies revealed a marked suppression of death by arginine when the mice were infected with HHV-2 through the vaginal route, followed by an intermittent application of acidic arginine by vaginal instillation.


International Journal of Molecular Medicine | 2011

Effects of electrolytes on virus inactivation by acidic solutions.

Mitsunori Nishide; Kazuko Tsujimoto; Misao Uozaki; Keiko Ikeda; Hisashi Yamasaki; A. Hajime Koyama; Tsutomu Arakawa

Acidic pH is frequently used to inactivate viruses. We have previously shown that arginine synergizes with low pH in enhancing virus inactivation. Considering a potential application of the acid inactivation of viruses for the prevention and treatment of superficial virus infection at body surfaces and fixtures, herein we have examined the effects of various electrolytes on the acid-induced inactivation of the herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2), the influenza A virus (IAV) and the poliovirus upon their incubation at 30˚C for 5 min. Eight electrolytes, i.e., phosphate, NaCl, glutamate, aspartate, pyrrolidone carboxylate, citrate, malate and acetate were tested. No detectable inactivation of the poliovirus was observed under the conditions examined, reflecting its acid-resistance. HSV-1 and HSV-2 responded similarly to the acid-treatment and electrolytes. Some electrolytes showed a stronger virus inactivation than others at a given pH and concentration. The effects of the electrolytes were virus-dependent, as IAV responded differently from HSV-1 and HSV-2 to these electrolytes, indicating that certain combinations of the electrolytes and a low pH can exert a more effective virus inactivation than other combinations and that their effects are virus-specific. These results should be useful in designing acidic solvents for the inactivation of viruses at various surfaces.


Advances in Virology | 2011

Antiviral and Virucidal Activities of Nα-Cocoyl-L-Arginine Ethyl Ester

Hisashi Yamasaki; Kazuko Tsujimoto; Keiko Ikeda; Yukiko Suzuki; Tsutomu Arakawa; A. Hajime Koyama

Various amino acid-derived compounds, for example, Nα-Cocoyl-L-arginine ethyl ester (CAE), alkyloxyhydroxylpropylarginine, arginine cocoate, and cocoyl glycine potassium salt (Amilite), were examined for their virucidal activities against herpes simplex virus type 1 and 2 (HSV-1 and HSV-2), influenza A virus (IAV), and poliovirus type 1 (PV-1) in comparison to benzalkonium chloride (BKC) and sodium dodecylsulfate (SDS) as a cationic and anionic control detergent and also to other commercially available disinfectants. While these amino acid-derived compounds were all effective against HSV-1 and HSV-2, CAE and Amilite were the most effective. These two compounds were, however, not as effective against IAV, another enveloped virus, as against HSV. Cytotoxicity of CAE was weak; at 0.012%, only 5% of the cells were killed under the conditions, in which 100% cells were killed by either SDS or BKC. In addition to these direct virucidal effects, CAE inhibited the virus growth in the HSV-1- or PV-1-infected cells even at 0.01%. These results suggest a potential application of CAE as a therapeutic or preventive medicine against HSV superficial infection at body surface.


International Journal of Biological Macromolecules | 2018

Protein aggregation suppressor arginine as an effective mouth cleaning agent

Keiko Ikeda; Daisuke Ejima; Tsutomu Arakawa; A. Hajime Koyama

We have tested here whether or not arginine, a well-known aggregation suppressor, is effective in removing bacterial cells, which may present a potential risk of accidental pneumonia infection in aged individuals, from the oral mucosal membranes. This is based on the ability of arginine to suppress protein-protein interaction and surface adsorption and increase the solubility of organic compounds. Twelve student volunteers were subjected to mouthwashes with saline, citrate buffer (pH 3.5), arginine (pH 3.5) and a commercial Listerine. Insignificant effects were observed with saline and citrate buffer, whereas arginine and Listerine mouthwashes led to significant reduction of bacterial cells from the dorsal side of the volunteers tongue. Arginine also appeared to disrupt biofilms present in the mouth.


Analytical Sciences | 2018

Process for the Purification of cis-p-Coumaric Acid by Cellulose Column Chromatography after the Treatment of the trans Isomer with Ultraviolet Irradiation

Takahiko Mitani; Hisa Mimura; Keiko Ikeda; Mitsunori Nishide; Masanori Yamaguchi; Hajime Koyama; Yukinori Hayashi; Hidefumi Sakamoto

A methanolic solution of trans-p-coumaric acid was exposed to ultraviolet radiation and a mixture solution of the trans and cis isomers was subjected to cellulose column chromatography, eluting with an aqueous 0.1% trifluoroacetic acid solution containing methanol (90:10, v/v). Separation of the trans and cis isomers was achieved. The identity of the cis isomer was confirmed by TLC, HPLC, and NMR. Since both the support and eluent are inexpensive, the cis isomers can be obtained economically on both the laboratory and industrial scales.


Experimental and Therapeutic Medicine | 2015

Survival of influenza A virus on contaminated student clothing.

Keiko Ikeda; Kazuko Tsujimoto; Yukiko Suzuki; Augustine Hajime Koyama

The role of contaminated clothing in the transmission of influenza A virus during an epidemic period was investigated by examining the recovery of infectious influenza virus from experimentally virus-contaminated clothing, which had been subejected to routine wearing and washing for several months or years. The amount of infectious virus recovered from the nine types of clothing decreased with time and was shown to differ widely between clothing samples, when the contaminated clothing samples were maintained in uncovered glass Petri dishes in a safety cabinet under air blowing. These results indicate a dependence of virus transmissibility on the nature of the contaminated clothes. The difference in recovery was shown to have no significant correlation with the thickness or the materials of the clothing; however, a correlation was observed with the residual amount of water in the deposited virus preparation on the test clothing.


International Journal of Molecular Medicine | 2009

Antiviral effect of arginine against herpes simplex virus type 1

Takeshi Naito; Hiroshi Irie; Kazuko Tsujimoto; Keiko Ikeda; Tsutomu Arakawa; A. Hajime Koyama

Collaboration


Dive into the Keiko Ikeda's collaboration.

Top Co-Authors

Avatar

A. Hajime Koyama

Wakayama Medical University

View shared research outputs
Top Co-Authors

Avatar

Hisashi Yamasaki

Wakayama Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Misao Uozaki

Wakayama Medical University

View shared research outputs
Top Co-Authors

Avatar

Yukiko Suzuki

Wakayama Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge