Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keiko Inami is active.

Publication


Featured researches published by Keiko Inami.


Organic and Biomolecular Chemistry | 2003

Kinetic study of the electron-transfer oxidation of the phenolate anion of a vitamin E model by molecular oxygen generating superoxide anion in an aprotic medium.

Ikuo Nakanishi; Kentaro Miyazaki; Tomokazu Shimada; Yuko Iizuka; Keiko Inami; Masataka Mochizuki; Shiro Urano; Haruhiro Okuda; Toshihiko Ozawa; Shunichi Fukuzumi; Nobuo Ikota; Kiyoshi Fukuhara

Electron-transfer reduction of molecular oxygen (O2) by the phenolate anion (1-) of a vitamin E model, 2,2,5,7,8-pentamethylchroman-6-ol (1H), occurred to produce superoxide anion, which could be directly detected by a low-temperature EPR measurement. The rate of electron transfer from 1- to O2 was relatively slow, since this process is energetically unfavourable. The one-electron oxidation potential of 1- determined by cyclic voltammetric measurements is sufficiently negative to reduce 2,2-bis(4-tert-octylphenyl)-1-picrylhydrazyl radical (DOPPH*) to the corresponding one-electron reduced anion, DOPPH-, suggesting that 1- can also act as an efficient radical scavenger.


Bioorganic & Medicinal Chemistry | 2012

Chlorine atom substitution influences radical scavenging activity of 6-chromanol.

Keiko Inami; Yuko Iizuka; Miyuki Furukawa; Ikuo Nakanishi; Kei Ohkubo; Kiyoshi Fukuhara; Shunichi Fukuzumi; Masataka Mochizuki

Synthetic 6-chromanol derivatives were prepared with several chlorine substitutions, which conferred both electron-withdrawing inductive effects and electron-donating resonance effects. A trichlorinated compound (2), a dichlorinated compound (3), and three monochlorinated compounds (4, 5, and 6) were synthesized; compounds 2, 3, and 6 were novel. The antioxidant activities of the compounds, evaluated in terms of their capacities to scavenge galvinoxyl radical, were associated with the number and positioning of chlorine atoms in the aromatic ring of 6-chromanol. The activity of compound 1 (2,2-dimethyl-6-chromanol) was slightly higher than the activities of compounds 2 (2,2-dimethyl-5,7-dichloro-6-chromanol) or 3 (2,2-dimethyl-5,7,8-trichloro-6-chromanol), in which the chlorine atoms were ortho to the phenolic hydroxyl group of 6-chromanol. The scavenging activity of compound 3 was slightly higher than that of 2, which contained an additional chlorine substituted in the 8 position. The activities of polychlorinated compounds 2 and 3 were higher than the activities of any of the monochlorinated compounds (4-6). Compound 6, in which a chlorine was substituted in the 8 position, exhibited the lowest activity. Substitution of a chlorine atom meta to the hydroxyl group of 6-chromanol (compounds 2 and 6) decreased galvinoxyl radical scavenging activity, owing to the electron-withdrawing inductive effect of chlorine. Positioning the chloro group ortho to the hydroxyl group (compounds 4 and 5) retained antioxidant activity because the intermediate radical was stabilized by the electron-donating resonance effect of chlorine in spite of the electron-withdrawing inductive effect of chlorine. Antioxidant activities of the synthesized compounds were evaluated for correlations with the O-H bond dissociation energies (BDEs) and the ionization potentials. The BDEs correlated with the second-order rate constants (k) in the reaction between galvinoxyl radical and the chlorinated 6-chromanol derivatives in acetonitrile. This indicated that the antioxidant mechanism of the synthesized compounds consisted of a one-step hydrogen atom transfer from the phenolic OH group rather than an electron transfer followed by a proton transfer. The synthesized compounds also exhibited hydroxyl radical scavenging capacities in aqueous solution.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2002

Chemical models for cytochrome P450 as a biomimetic metabolic activation system in mutation assays

Keiko Inami; Masataka Mochizuki

DNA damage is a critical factor in carcinogenesis. The Ames assay is a short-term test that screens for DNA-damaging agents. To be detected in the assay, most carcinogens require oxidation by cytochrome P450, a component of the liver homogenate preparation (S9 mix) that is traditionally used to metabolize promutagens to an active form in vitro. A combination of iron(III) porphyrin plus an oxidant activates many promutagens by mimicking cytochrome P450 metabolism. We previously reported that the mutagenicity of the N-nitrosodialkylamines was detected following reaction with tetrakis(pentafluorophenyl)porphyrinatoiron(III) chloride (Fe(F(5)P)Cl) plus tert-butyl hydroperoxide (t-BuOOH), which yielded the same alcohols and aldehydes as the enzymatic reaction. In the present study, to extend the scope of biomimetic models, we tested the mutagenicity of other carcinogens exposed to chemical oxidation systems.We investigated the optimal assay conditions for the models in Salmonella typhimurium TA1538, a strain sensitive to frame-shift mutagens. We activated 2-aminofluorene (AF), benzo[a]pyrene (B[a]P), a tryptophane pyrolysate 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), and 2-acetylaminofluorene (AAF) with Fe(F(5)P)Cl plus an oxidant-t-BuOOH, m-chloroperoxybenzoic acid (mCPBA), or magnesium monoperoxyphthalate (MPPT)-and we noted the effect of three solvents-acetonitrile (CH(3)CN),1,4-dioxane, and N,N-dimethylformamide (DMF)-on AF activation. All the promutagens became mutagenic in the presence of Fe(F(5)P)Cl plus an oxidant, with the effectiveness of the oxidant varying with the chemical. Aromatic amines, for example, showed the strongest mutagenicity with t-BuOOH whereas polycyclic hydrocarbons showed the strongest mutagenicity with mCPBA. All the promutagens were mutagenic in the presence of Fe(F(5)P)Cl plus MPPT. For AF activation, the order of effectiveness of the solvents was CH(3)CN>1,4-dioxane>DMF. The results suggested that these systems would serve as useful models for microsomal activating systems.


Toxicology in Vitro | 2009

Mutagenicity of aromatic amines and amides with chemical models for cytochrome P450 in Ames assay.

Keiko Inami; Mikiko Okazawa; Masataka Mochizuki

Chemical models for cytochrome P450, consisting of water-insoluble or water-soluble iron porphyrin plus an oxidant, have been used to detect the mutagenicity of promutagens in genotoxicity assays. The procedure for using chemical models for cytochrome P450 as substitutes for the S9 mix in the Ames assay have been already established. Aromatic amines and amides require metabolic activation by cytochrome P450 when they exert their mutagenicity in Salmonella typhimurium strains. In this study, we optimized the conditions of the assay using a water-soluble chemical model, 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrinatoiron(III) pentachloride (4-MPy), plus tert-butyl hydroperoxide (t-BuOOH), magnesium monoperoxyphthalate, or iodosylbenzene, by comparing the mutagenicity of 2-aminofluorene (AF) in the Ames test. The model with 4-MPy/t-BuOOH showed the highest AF mutagenic potency. The chemical model activated 2-naphthylamine, 4-aminobiphenyl, and benzidine in S.typhimurium TA98. In aromatic amides, the model with 4-MPy/t-BuOOH weakly activated 2-acetylaminofluorene (AAF). To detect higher mutagenicity of aromatic amides, we used a higher concentration of 4-MPy/t-BuOOH by a factor of 5 over that used for aromatic amines, and then detected the mutagenicity of AAF, 2-acetylaminoanthracene, and 2-acetylamino-9-fluorenone. Furthermore, we concluded that the AAF mutagenicity in the presence of 4-MPy/t-BuOOH is derived from N-hydroxylacetylamino compounds.


Bioorganic & Medicinal Chemistry | 2011

7-Azabicyclo[2.2.1]heptane as a structural motif to block mutagenicity of nitrosamines

Tomohiko Ohwada; Satoko Ishikawa; Yusuke Mine; Keiko Inami; Takahiro Yanagimoto; Fumika Karaki; Yoji Kabasawa; Yuko Otani; Masataka Mochizuki

Nitrosamines are potent carcinogens and toxicants in the rat and potential genotoxins in humans. They are metabolically activated by hydroxylation at an α-carbon atom with respect to the nitrosoamino group, catalyzed by cytochrome P450. However, there has been little systematic investigation of the structure-mutagenic activity relationship of N-nitrosamines. Herein, we evaluated the mutagenicity of a series of 7-azabicyclo[2.2.1]heptane N-nitrosamines and related monocyclic nitrosamines by using the Ames assay. Our results show that the N-nitrosamine functionality embedded in the bicyclic 7-azabicylo[2.2.1]heptane structure lacks mutagenicity, that is, it is inert to α-hydroxylation, which is the trigger of mutagenic events. Further, the calculated α-C-H bond dissociation energies of the bicyclic nitrosamines are larger in magnitude than those of the corresponding monocyclic nitrosamines and N-nitrosodimethylamine by as much as 20-30 kcal/mol. These results are consistent with lower α-C-H bond reactivity of the bicyclic nitrosamines. Thus, the 7-azabicyclo[2.2.1]heptane structural motif may be useful for the design of nongenotoxic nitrosamine compounds with potential biological/medicinal applications.


Bioorganic & Medicinal Chemistry | 2010

Activation mechanism for N-nitroso-N-methylbutylamine mutagenicity by radical species

Nozomi Tsutsumi; Keiko Inami; Masataka Mochizuki

N-Nitrosodialkylamines are known to be potent indirect-acting mutagens/carcinogens, which are activated by cytochrome P450. The reaction product of N-nitroso-N-methylbutylamine (NMB) with modified Fentons reagent supplemented with copper salt (Fe²(+)-Cu²(+)-H₂O₂) was reported to be mutagenic in Salmonella typhimurium TA1535 without S9 mix. In this study, the NMB activation mechanism was investigated by ESR spectroscopy with radical trapping agents to detect radical species and also by observing changes in mutagenic potency with a Salmonella strain in the Ames assay in the presence of radical trapping agents. In ESR spectroscopy experiments, the hydroxyl radical generated from the modified Fentons reagent was detected using the hydroxyl radical trapping agent 5,5-dimethyl-1-pyrroline N-oxide (DMPO). Since the amount of the DMPO-OH adduct decreased with the addition of NMB, hydroxyl radical was presumed to react with NMB followed by the generation of nitric oxide (NO), which was detected as CarboxyPTI through reaction with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (CarboxyPTIO). The mutagenicity of the reaction extract decreased following the addition of DMPO or CarboxyPTIO. Furthermore, the mutagenicity of the reaction product in the presence of DMPO was enhanced by the addition of NO. The reaction product from NMB with Fe²(+)-Cu²(+)-NO in the absence of H₂O₂ was mutagenic, and this activity increased with the introduction of additional NO. These findings suggest that hydroxyl radical takes part in the generation of NO from NMB and that NO plays an important role in NMB activation in the presence of Fe²(+) and Cu²(+).


Bioorganic & Medicinal Chemistry | 2011

Isolation and structural identification of a direct-acting mutagen derived from N-nitroso-N-methylpentylamine and Fenton’s reagent with copper ion

Motofumi Miura; Keiko Inami; Masafumi Yoshida; Kentaro Yamaguchi; Tadahiko Mashino; Masataka Mochizuki

N-Nitrosodialkylamines show their mutagenicity by forming α-hydroxynitrosamines in the presence of rat S9 mix in the Ames assay. The hydroxyl radical derived from Fe(2+)-H(2)O(2) (Fentons reagent) with Cu(2+) activates N-nitrosamines, with an alkyl chain longer than a propyl constituent, to a direct-acting mutagen. The reactivity of Fe(2+)-Cu(2+)-H(2)O(2) on nitrosamines in relation to their metabolic activation is not fully characterized. Here, we report the identification of the direct-acting mutagen derived from N-nitroso-N-methylpentylamine (NMPe) in the presence of Fe(2+), Cu(2+), H(2)O(2) and nitric oxide (NO), which is a product of nitrosamine metabolism. A dichloromethane extract of the NMPe reaction mixtures was fractionated by silica gel column chromatography several times and by a preparative high performance liquid chromatography (HPLC); we obtained white crystals as a product. The direct-acting mutagen that was isolated was provisionally identified as 5-ethyl-5-nitro-1-pyrazoline 1-oxide by (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopy, infrared (IR) spectroscopy and X-ray crystallography. To confirm the structure of the mutagen, the authentic compound was synthesized from 2-nitrobutene and diazomethane, followed by N-oxidation with m-chloroperoxybenzoic acid. The (1)H NMR spectral data from the direct-acting mutagen that was synthesized was identical to the data from the isolated mutagen. Furthermore, the authentic 5-ethyl-5-nitro-1-pyrazoline 1-oxide was mutagenic in Salmonella typhimurium TA1535. The results showed that 5-ethyl-5-nitro-1-pyrazoline 1-oxide was a direct-acting mutagen derived from the reaction of NMPe and Fe(2+)-Cu(2+)-H(2)O(2)-NO.


Bioorganic & Medicinal Chemistry | 2008

Oxidative transformation of 2-acetylaminofluorene by a chemical model for cytochrome P450: A water-insoluble porphyrin and tert-butyl hydroperoxide

Keiko Inami; Masataka Mochizuki

Oxidation of 2-acetylaminofluorene (AAF), a carcinogen, by a chemical model for cytochrome P450 was investigated to identify an active mutagen and elucidate the oxidation pathway. The oxidation system consisted of a water-insoluble tetrakis(pentafluorophenyl)porphyrinatoiron(III) chloride and tert-butyl hydroperoxide. The mutagen derived from AAF by the chemical model was 2-nitro-9-fluorenone (NO(2)=FO), which was mutagenic in Salmonella typhimurium TA1538. AAF was oxidized initially at position 9 of the fluorene carbon by the chemical model forming 2-acetylamino-9-fluorenol (AAF-OH), and then oxidized further to 2-acetylamino-9-fluorenone (AAF=O) as a major product. Initial oxidation of the nitrogen formed 2-nitrofluorene (NO(2)F), and further oxidation yielded 2-nitro-9-fluorenol (NO(2)F-OH) as a minor product. These products, AAF-OH, AAF=O, NO(2)F, and NO(2)F-OH, and their presumable common intermediate, N-hydroxy-2-acetylaminofluorene, were oxidized by the chemical model, and the formation of NO(2)F=O was determined. These results showed that NO(2)F=O was the mutagen derived from AAF in the presence of the chemical model and was formed via oxidation of N-OH-AAF, NO(2)F, and NO(2)F-OH. These results may lead to a new metabolic pathway of AAF.


Bioorganic & Medicinal Chemistry | 2013

Transnitrosation of alicyclic N-nitrosamines containing a sulfur atom

Keiko Inami; Sonoe Kondo; Yuta Ono; Chiharu Saso; Masataka Mochizuki

Aromatic and aliphatic nitrosamines are known to transfer a nitrosonium ion to another amine. The transnitrosation of alicyclic N-nitroso compounds generates S-nitrosothiols, which are potential nitric oxide donors in vivo. In this study, certain alicyclic N-nitroso compounds based on non-mutagenic N-nitrosoproline or N-nitrosothioproline were synthesised, and the formation of S-nitrosoglutathione (GSNO) was quantified under acidic conditions. We then investigated the effect of a sulfur atom as the substituent and as a ring component on the GSNO formation. In the presence of thiourea under acidic conditions, GSNO was formed from N-nitrosoproline and glutathione, and an N-nitroso compound containing a sulfur atom and glutathione produced GSNO without thiourea. The quantity of GSNO derived from the reaction of the N-nitrosamines containing a sulfur atom and glutathione was higher than that from the N-nitrosoproline and glutathione plus thiourea. Among the analogues that contained a sulfur atom either in the ring or as a substituent, the thiazolidines produced a slightly higher quantity of GSNO than the analogue with a thioamide group. A compound containing sulfur atoms both in the ring and as a substituent exhibited the highest activity for GSNO formation among the alicyclic N-nitrosamines tested. The results indicate that the intramolecular sulfur atom plays an important role in the transnitrosation via alicyclic N-nitroso compounds to form GSNO.


Journal of The Chemical Society-perkin Transactions 1 | 2002

Effects of magnesium ion on kinetic stability and spin distribution of phenoxyl radical derived from a vitamin E analogue: mechanistic insight into antioxidative hydrogen-transfer reaction of vitamin E

Ikuo Nakanishi; Kiyoshi Fukuhara; Tomokazu Shimada; Kei Ohkubo; Yuko Iizuka; Keiko Inami; Masataka Mochizuki; Shiro Urano; Shinobu Itoh; Naoki Miyata; Shunichi Fukuzumi

The phenoxyl radical 1˙ of a vitamin E analogue, generated by the reaction of 2,2,5,7,8-pentamethylchroman-6-ol (1H) with 2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl (DPPH˙) or galvinoxyl (G˙), was significantly stabilized by the presence of Mg2+. Addition of Mg2+ into a solution of 1˙ resulted in a red shift of the absorption band of 1˙ as well as a decrease in the g value of the EPR spectrum of 1˙, indicating a complex formation between 1˙ and Mg2+. The complexation between the phenoxyl radical and Mg2+ significantly retards the disproportionation reaction of 1˙ by electronic repulsion between the metal cation and a generated organic cation (1+), leading to stabilization of the organic radical species. No effect of Mg2+ on the rate of hydrogen atom transfer from 1H to DPPH˙ or to G˙ was observed, suggesting that the hydrogen-transfer reaction between 1H and DPPH˙ or G˙ proceeds via a one-step hydrogen atom transfer mechanism rather than electron-transfer followed by proton transfer.

Collaboration


Dive into the Keiko Inami's collaboration.

Top Co-Authors

Avatar

Masataka Mochizuki

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar

Ikuo Nakanishi

National Institute of Radiological Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toshihiko Ozawa

Showa Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Kiyoshi Fukuhara

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Nobuo Ikota

National Institute of Radiological Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shiro Urano

Shibaura Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge