Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keiko Kadono-Okuda is active.

Publication


Featured researches published by Keiko Kadono-Okuda.


Proceedings of the National Academy of Sciences of the United States of America | 2003

The construction of an EST database for Bombyx mori and its application

Kazuei Mita; Mitsuoki Morimyo; Kazuhiro Okano; Yoshiko Koike; Junko Nohata; Hideki Kawasaki; Keiko Kadono-Okuda; Kimiko Yamamoto; Masataka G. Suzuki; Toru Shimada; Marian R. Goldsmith; Susumu Maeda

To build a foundation for the complete genome analysis of Bombyx mori, we have constructed an EST database. Because gene expression patterns deeply depend on tissues as well as developmental stages, we analyzed many cDNA libraries prepared from various tissues and different developmental stages to cover the entire set of Bombyx genes. So far, the Bombyx EST database contains 35,000 ESTs from 36 cDNA libraries, which are grouped into ≈11,000 nonredundant ESTs with the average length of 1.25 kb. The comparison with FlyBase suggests that the present EST database, SilkBase, covers >55% of all genes of Bombyx. The fraction of library-specific ESTs in each cDNA library indicates that we have not yet reached saturation, showing the validity of our strategy for constructing an EST database to cover all genes. To tackle the coming saturation problem, we have checked two methods, subtraction and normalization, to increase coverage and decrease the number of housekeeping genes, resulting in a 5–11% increase of library-specific ESTs. The identification of a number of genes and comprehensive cloning of gene families have already emerged from the SilkBase search. Direct links of SilkBase with FlyBase and WormBase provide ready identification of candidate Lepidoptera-specific genes.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Single amino acid mutation in an ATP-binding cassette transporter gene causes resistance to Bt toxin Cry1Ab in the silkworm, Bombyx mori

Shogo Atsumi; Kazuhisa Miyamoto; Kimiko Yamamoto; Junko Narukawa; Sawako Kawai; Hideki Sezutsu; Isao Kobayashi; Keiro Uchino; Toshiki Tamura; Kazuei Mita; Keiko Kadono-Okuda; Sanae Wada; Kohzo Kanda; Marian R. Goldsmith; Hiroaki Noda

Bt toxins derived from the arthropod bacterial pathogen Bacillus thuringiensis are widely used for insect control as insecticides or in transgenic crops. Bt resistance has been found in field populations of several lepidopteran pests and in laboratory strains selected with Bt toxin. Widespread planting of crops expressing Bt toxins has raised concerns about the potential increase of resistance mutations in targeted insects. By using Bombyx mori as a model, we identified a candidate gene for a recessive form of resistance to Cry1Ab toxin on chromosome 15 by positional cloning. BGIBMGA007792-93, which encodes an ATP-binding cassette transporter similar to human multidrug resistance protein 4 and orthologous to genes associated with recessive resistance to Cry1Ac in Heliothis virescens and two other lepidopteran species, was expressed in the midgut. Sequences of 10 susceptible and seven resistant silkworm strains revealed a common tyrosine insertion in an outer loop of the predicted transmembrane structure of resistant alleles. We confirmed the role of this ATP-binding cassette transporter gene in Bt resistance by converting a resistant silkworm strain into a susceptible one by using germline transformation. This study represents a direct demonstration of Bt resistance gene function in insects with the use of transgenesis.


BMC Genomics | 2009

KAIKObase: An integrated silkworm genome database and data mining tool

Michihiko Shimomura; Hiroshi Minami; Yoshitaka Suetsugu; Hajime Ohyanagi; Chikatada Satoh; Baltazar A. Antonio; Yoshiaki Nagamura; Keiko Kadono-Okuda; Hideyuki Kajiwara; Hideki Sezutsu; Javaregowda Nagaraju; Marian R. Goldsmith; Qingyou Xia; Kimiko Yamamoto; Kazuei Mita

BackgroundThe silkworm, Bombyx mori, is one of the most economically important insects in many developing countries owing to its large-scale cultivation for silk production. With the development of genomic and biotechnological tools, B. mori has also become an important bioreactor for production of various recombinant proteins of biomedical interest. In 2004, two genome sequencing projects for B. mori were reported independently by Chinese and Japanese teams; however, the datasets were insufficient for building long genomic scaffolds which are essential for unambiguous annotation of the genome. Now, both the datasets have been merged and assembled through a joint collaboration between the two groups.DescriptionIntegration of the two data sets of silkworm whole-genome-shotgun sequencing by the Japanese and Chinese groups together with newly obtained fosmid- and BAC-end sequences produced the best continuity (~3.7 Mb in N50 scaffold size) among the sequenced insect genomes and provided a high degree of nucleotide coverage (88%) of all 28 chromosomes. In addition, a physical map of BAC contigs constructed by fingerprinting BAC clones and a SNP linkage map constructed using BAC-end sequences were available. In parallel, proteomic data from two-dimensional polyacrylamide gel electrophoresis in various tissues and developmental stages were compiled into a silkworm proteome database. Finally, a Bombyx trap database was constructed for documenting insertion positions and expression data of transposon insertion lines.ConclusionFor efficient usage of genome information for functional studies, genomic sequences, physical and genetic map information and EST data were compiled into KAIKObase, an integrated silkworm genome database which consists of 4 map viewers, a gene viewer, and sequence, keyword and position search systems to display results and data at the level of nucleotide sequence, gene, scaffold and chromosome. Integration of the silkworm proteome database and the Bombyx trap database with KAIKObase led to a high-grade, user-friendly, and comprehensive silkworm genome database which is now available from URL: http://sgp.dna.affrc.go.jp/KAIKObase/.


Journal of General Virology | 1997

Efficient protein production using a Bombyx mori nuclear polyhedrosis virus lacking the cysteine proteinase gene

Takeo Suzuki; Toshimichi Kanaya; Hironobu Okazaki; Katsuaki Ogawa; Akihiro Usami; Hitoshi Watanabe; Keiko Kadono-Okuda; Minoru Yamakawa; Hideki Sato; Hajime Mori; Saori Takahashi; Kohei Oda

Infection by a baculovirus (Bombyx mori nuclear polyhedrosis virus, BmNPV) in silkworm (Bombyx mori) larvae is highly efficient as an expression system for the production of useful proteins. However, the amount of the protein of interest expressed tends to decrease in the later stages of infection presumably due, in part, to a proteinase produced in the larval haemolymph. The N-terminal amino acid sequence of a proteinase purified from the haemolymph of BmNPV-infected larvae was identical to the internal amino acid sequence of the viral cysteine proteinase gene of BmNPV, suggesting that the cysteine proteinase in the haemolymph originated from the BmNPV gene. We constructed a mutant virus (CPd) which had a deletion in the cysteine proteinase gene. No proteinase activity corresponding to this proteinase was detected in the haemolymph of silkworm larvae infected with CPd. The firefly luciferase and the human growth hormone genes were separately introduced into CPd under control of the polyhedrin promoter. These constructs produced these proteins very efficiently, because of a greatly reduced degree of degradation of these proteins. A BmNPV vector system using CPd enhances the stability of foreign expressed proteins, especially for those that are cysteine proteinase-sensitive.


Genome Biology | 2008

A BAC-based integrated linkage map of the silkworm Bombyx mori

Kimiko Yamamoto; Junko Nohata; Keiko Kadono-Okuda; Junko Narukawa; Motoe Sasanuma; Shun-ichi Sasanuma; Hiroshi Minami; Michihiko Shimomura; Yoshitaka Suetsugu; Yutaka Banno; Kazutoyo Osoegawa; Pieter J. de Jong; Marian R. Goldsmith; Kazuei Mita

BackgroundIn 2004, draft sequences of the model lepidopteran Bombyx mori were reported using whole-genome shotgun sequencing. Because of relatively shallow genome coverage, the silkworm genome remains fragmented, hampering annotation and comparative genome studies. For a more complete genome analysis, we developed extended scaffolds combining physical maps with improved genetic maps.ResultsWe mapped 1,755 single nucleotide polymorphism (SNP) markers from bacterial artificial chromosome (BAC) end sequences onto 28 linkage groups using a recombining male backcross population, yielding an average inter-SNP distance of 0.81 cM (about 270 kilobases). We constructed 6,221 contigs by fingerprinting clones from three BAC libraries digested with different restriction enzymes, and assigned a total of 724 single copy genes to them by BLAST (basic local alignment search tool) search of the BAC end sequences and high-density BAC filter hybridization using expressed sequence tags as probes. We assigned 964 additional expressed sequence tags to linkage groups by restriction fragment length polymorphism analysis of a nonrecombining female backcross population. Altogether, 361.1 megabases of BAC contigs and singletons were integrated with a map containing 1,688 independent genes. A test of synteny using Oxford grid analysis with more than 500 silkworm genes revealed six versus 20 silkworm linkage groups containing eight or more orthologs of Apis versus Tribolium, respectively.ConclusionThe integrated map contains approximately 10% of predicted silkworm genes and has an estimated 76% genome coverage by BACs. This provides a new resource for improved assembly of whole-genome shotgun data, gene annotation and positional cloning, and will serve as a platform for comparative genomics and gene discovery in Lepidoptera and other insects.


Genetics | 2006

Construction of a single nucleotide polymorphism linkage map for the silkworm, Bombyx mori, based on bacterial artificial chromosome end sequences.

Kimiko Yamamoto; Junko Narukawa; Keiko Kadono-Okuda; Junko Nohata; Motoe Sasanuma; Yoshitaka Suetsugu; Yutaka Banno; Hiroshi Fujii; Marian R. Goldsmith; Kazuei Mita

We have developed a linkage map for the silkworm Bombyx mori based on single nucleotide polymorphisms (SNPs) between strains p50T and C108T initially found on regions corresponding to the end sequences of bacterial artificial chromosome (BAC) clones. Using 190 segregants from a backcross of a p50T female × an F1 (p50T × C108T) male, we analyzed segregation patterns of 534 SNPs between p50T and C108T, detected among 3840 PCR amplicons, each associated with a p50T BAC end sequence. This enabled us to construct a linkage map composed of 534 SNP markers spanning 1305 cM in total length distributed over the expected 28 linkage groups. Of the 534 BACs whose ends harbored the SNPs used to construct the linkage map, 89 were associated with 107 different ESTs. Since each of the SNP markers is directly linked to a specific genomic BAC clone and to whole-genome sequence data, and some of them are also linked to EST data, the SNP linkage map will be a powerful tool for investigating silkworm genome properties, mutation mapping, and map-based cloning of genes of industrial and agricultural interest.


Insect Biochemistry and Molecular Biology | 1994

Lipopolysaccharide-lipophorin complex formation in insect hemolymph: a common pathway of lipopolysaccharide detoxification both in insects and in mammals

Yusuke Kato; Yoshiko Motoi; Kiyoko Taniai; Keiko Kadono-Okuda; Masanori Yamamoto; Yoshiaki Higashino; Michio Shimabukuro; Subrata Chowdhury; Jinhua Xu; Masao Sugiyama; Miyako Hiramatsu; Minoru Yamakawa

The formation of the lipophorin-lipopolysaccharide (LPS) complex in Bombyx mori hemolymph and its role in LPS detoxification were explored. LPS, an antibacterial protein inducer in insects, was injected into B. mori larvae. Analytical density gradient ultracentrifugation revealed that after injection the LPS peak shifts to a zone of lower density with time. The shifted peak was identified as the lipophorin-LPS complex. This complex formation was also achieved in an in vitro mixture of cell-free hemolymph and LPS at 25 degrees C but not at 1 degree C. The lipophorin-LPS complex had a significantly lower capacity to elicit the mRNA of cecropin B, an antibacterial protein. The biological activity of reextracted LPS from the complex was slightly reduced in the Limulus test and no structural modification was observed in sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE). These results suggested that the formation of lipophorin-LPS strikingly reduces the cecropin inducibility of LPS without any structural change in LPS. Similar serum lipoprotein-LPS complex formation and reduction of biological activities of LPS were also observed in mammals. We, therefore, suggest that the formation of the serum lipoprotein-LPS complex is a common pathway to inactivate LPS both in insects and in mammals.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Deletion of a gene encoding an amino acid transporter in the midgut membrane causes resistance to a Bombyx parvo-like virus

Katsuhiko Ito; Kurako Kidokoro; Hideki Sezutsu; Junko Nohata; Kimiko Yamamoto; Isao Kobayashi; Keiro Uchino; Andrew Kalyebi; Ryokitsu Eguchi; Wajiro Hara; Toshiki Tamura; Susumu Katsuma; Toru Shimada; Kazuei Mita; Keiko Kadono-Okuda

Bombyx mori densovirus type 2 (BmDNV-2), a parvo-like virus, replicates only in midgut columnar cells and causes fatal disease. The resistance expressed in some silkworm strains against the virus is determined by a single gene, nsd-2, which is characterized as nonsusceptibility irrespective of the viral dose. However, the responsible gene has been unknown. We isolated the nsd-2 gene by positional cloning. The virus resistance is caused by a 6-kb deletion in the ORF of a gene encoding a 12-pass transmembrane protein, a member of an amino acid transporter family, and expressed only in midgut. Germ-line transformation with a wild-type transgene expressed in the midgut restores susceptibility, showing that the defective membrane protein is responsible for resistance. Cumulatively, our data show that the membrane protein is a functional receptor for BmDNV-2. This is a previously undescribed report of positional cloning of a mutant gene in Bombyx and isolation of an absolute virus resistance gene in insects.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Repression of tyrosine hydroxylase is responsible for the sex-linked chocolate mutation of the silkworm, Bombyx mori

Chun Liu; Kimiko Yamamoto; Ting Cai Cheng; Keiko Kadono-Okuda; Junko Narukawa; Shiping Liu; Yu Han; Ryo Futahashi; Kurako Kidokoro; Hiroaki Noda; Isao Kobayashi; Toshiki Tamura; Akio Ohnuma; Yutaka Banno; Fang Ying Dai; Zhong Huai Xiang; Marian R. Goldsmith; Kazuei Mita; Qing You Xia

Pigmentation patterning has long interested biologists, integrating topics in ecology, development, genetics, and physiology. Wild-type neonatal larvae of the silkworm, Bombyx mori, are completely black. By contrast, the epidermis and head of larvae of the homozygous recessive sex-linked chocolate (sch) mutant are reddish brown. When incubated at 30 °C, mutants with the sch allele fail to hatch; moreover, homozygous mutants carrying the allele sch lethal (schl) do not hatch even at room temperature (25 °C). By positional cloning, we narrowed a region containing sch to 239,622 bp on chromosome 1 using 4,501 backcross (BC1) individuals. Based on expression analyses, the best sch candidate gene was shown to be tyrosine hydroxylase (BmTh). BmTh coding sequences were identical among sch, schl, and wild-type. However, in sch the ∼70-kb sequence was replaced with ∼4.6 kb of a Tc1-mariner type transposon located ∼6 kb upstream of BmTh, and in schl, a large fragment of an L1Bm retrotransposon was inserted just in front of the transcription start site of BmTh. In both cases, we observed a drastic reduction of BmTh expression. Use of RNAi with BmTh prevented pigmentation and hatching, and feeding of a tyrosine hydroxylase inhibitor also suppressed larval pigmentation in the wild-type strain, pnd+ and in a pS (black-striped) heterozygote. Feeding L-dopa to sch neonate larvae rescued the mutant phenotype from chocolate to black. Our results indicate the BmTh gene is responsible for the sch mutation, which plays an important role in melanin synthesis producing neonatal larval color.


Journal of Biological Chemistry | 2010

A CD36-related Transmembrane Protein Is Coordinated with an Intracellular Lipid-binding Protein in Selective Carotenoid Transport for Cocoon Coloration

Takashi Sakudoh; Tetsuya Iizuka; Junko Narukawa; Hideki Sezutsu; Isao Kobayashi; Seigo Kuwazaki; Yutaka Banno; Akitoshi Kitamura; Hiromu Sugiyama; Naoko Takada; Hirofumi Fujimoto; Keiko Kadono-Okuda; Kazuei Mita; Toshiki Tamura; Kimiko Yamamoto; Kozo Tsuchida

The transport pathway of specific dietary carotenoids from the midgut lumen to the silk gland in the silkworm, Bombyx mori, is a model system for selective carotenoid transport because several genetic mutants with defects in parts of this pathway have been identified that manifest altered cocoon pigmentation. In the wild-type silkworm, which has both genes, Yellow blood (Y) and Yellow cocoon (C), lutein is transferred selectively from the hemolymph lipoprotein to the silk gland cells where it is accumulated into the cocoon. The Y gene encodes an intracellular carotenoid-binding protein (CBP) containing a lipid-binding domain known as the steroidogenic acute regulatory protein-related lipid transfer domain. Positional cloning and transgenic rescue experiments revealed that the C gene encodes Cameo2, a transmembrane protein gene belonging to the CD36 family genes, some of which, such as the mammalian SR-BI and the fruit fly ninaD, are reported as lipoprotein receptors or implicated in carotenoid transport for visual system. In C mutant larvae, Cameo2 expression was strongly repressed in the silk gland in a specific manner, resulting in colorless silk glands and white cocoons. The developmental profile of Cameo2 expression, CBP expression, and lutein pigmentation in the silk gland of the yellow cocoon strain were correlated. We hypothesize that selective delivery of lutein to specific tissue requires the combination of two components: 1) CBP as a carotenoid transporter in cytosol and 2) Cameo2 as a transmembrane receptor on the surface of the cells.

Collaboration


Dive into the Keiko Kadono-Okuda's collaboration.

Top Co-Authors

Avatar

Kazuei Mita

National Institute of Radiological Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katsuhiko Ito

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar

Yusuke Kato

University of Tokushima

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Junko Nohata

National Institute of Radiological Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge