Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keiko Kondo is active.

Publication


Featured researches published by Keiko Kondo.


International Journal of Systematic and Evolutionary Microbiology | 2008

Prosthecobacter fluviatilis sp. nov., which lacks the bacterial tubulin btubA and btubB genes.

Minoru Takeda; Akiko Yoneya; Yuichi Miyazaki; Keiko Kondo; Hiroko Makita; Masashi Kondoh; Ichiro Suzuki; Jun-ichi Koizumi

Leptothrix cholodnii is a sheathed bacterium often found in metal-rich and oligotrophic aquatic environments. A bacterial strain that is able to degrade the NaOH-treated sheath of L. cholodnii was isolated. The isolate was a Gram-negative, aerobic and prosthecate bacterium. The optimum growth temperature and pH were 30 degrees C and pH 7.0, respectively. The DNA G+C content was 62.9 mol%. The major respiratory quinone was MK-6. A phylogenetic analysis based on the 16S rRNA gene indicated that the isolate is a member of the genus Prosthecobacter. The nearest relative was the type strain of Prosthecobacter vanneervenii, with a similarity of 97.1 %. However, the isolate does not possess the bacterial tubulin genes, btubA and btubB, unique to known species of the genus Prosthecobacter. It is proposed that the isolate represents a novel species, Prosthecobacter fluviatilis sp. nov. The type strain is HAQ-1(T) (=JCM 14805(T) =KACC 12649(T) =KCTC 22182(T)).


International Journal of Biological Macromolecules | 2010

Solubilization and structural determination of a glycoconjugate which is assembled into the sheath of Leptothrix cholodnii

Minoru Takeda; Keiko Kondo; Mina Yamada; Jun-ichi Koizumi; Tsukasa Mashima; Akimasa Matsugami; Masato Katahira

The sheath of Leptothrix cholodnii is constructed from a structural glycoconjugate, a straight-chained amphoteric heteropolysaccharide modified with glycine and cysteine. Though the structure of the glycan core is already determined, its modifications with amino acids and other molecules are not fully resolved. In this study, we aimed to determine the chemical structure of the glycoconjugate as a whole. Enantiomeric determination of cysteine in the sheath was performed and as a result, L-cysteine was detected. NMR spectroscopy was endeavored to determine overall structure of the glycoconjugate. Prior to NMR analysis, solubilization of the glycoconjugate was attempted by adding denaturing reagents or by derivatization. As far as tested, sulfonation by performic acid oxidation was suitable for solubilization, but further improvement was achieved by N-acetylation. The approximate molecular weight of the derivative was estimated to be 4.5 x 10(4) by size-exclusion chromatography. The NMR studies for the sulfonated glycoconjugate and its N-acetylated derivative revealed that the sheath glycoconjugate is a glycosaminoglycan consisting of a pentasaccharide repeating unit which is substoichiometrically esterified with 3-hydroxypropionic acid and stoichiometrically amidated with acetic acid and glycyl-L-cysteine.


International Journal of Biological Macromolecules | 2012

Presence of alternating glucosaminoglucan in the sheath of Thiothrix nivea.

Minoru Takeda; Keiko Kondo; Mina Yamada; Manami Sumikawa; Jun-ichi Koizumi; Tsukasa Mashima; Masato Katahira

A sheath-forming sulfa oxidizer, Thiothrix nivea, was mixotrophically cultured in a medium supplemented with acetic acid and sodium disulfide. Its sheath, a microtube-like extracellular supermolecule, was prepared by selectively removing the cells with lysozyme, sodium dodecyl sulfate, and sodium hydroxide. The sheath was not visibly affected by hydrazine treatment, suggesting that it is not a proteinous supermolecule. From the acid hydrolysate of the sheath, glucose and glucosamine were detected in an approximate molar ratio of 1:1. Three other saccharic compounds were detected and recovered by HPLC as fluorescent derivatives prepared by reaction with 4-aminobenzoic acid ethyl ester. Nuclear magnetic resonance (NMR) analysis suggested that one of the derivatives was derived from an unidentified deoxypentose. NMR analysis for the other 2 derivatives showed that they were derived from β-1,4-linked disaccharides and tetrasaccharides, which were composed of glucose and glucosamine. The sheath was readily broken down by weak HCl treatment, releasing an unidentified deoxypentose and polymer. Chemical analysis showed the presence of β-1,4-linked D-Glcp and D-GlcNp in the polymer. NMR analysis revealed that the polymer had a repeating unit of →4)-D-Glcp-(β1→4)-D-GlcNp-(β1→. The solid-state 1D-(13)C NMR spectrum of the polymer in N-acetylated form supported this result. The molecular weight of the polymer was estimated to be 8.2×10(4) by size exclusion chromatography. Based on these results, the sheath of T. nivea is hypothesized to be assembled from alternately β-1,4-linked glucosaminoglucan grafted with unidentified deoxypentose.


International Journal of Biological Macromolecules | 2013

Structure of perosamine-containing polysaccharide, a component of the sheath of Thiothrix fructosivorans.

Keiko Kondo; Takuto Umezu; Shoichi Shimura; Rie Narizuka; Jun-ichi Koizumi; Tsukasa Mashima; Masato Katahira; Minoru Takeda

A sheath-forming and sulfur-oxidizing bacterium, Thiothrix fructosivorans, was heterotrophically cultured. The sheath, which is an extracellular microtube, was prepared by selectively removing the cells using lysozyme, sodium dodecyl sulfate, and sodium hydroxide. Solid-state (13)C-nuclear magnetic resonance (NMR) spectrum revealed that the sheath is assembled from a glycan possessing acetyl and methyl groups. When the sheath was deacetylated, the original microtube structure was lost and the sheath became soluble under acidic conditions, revealing the importance of acetyl groups in maintaining the sheath structure. Equimolar d-glucose, d-glucosamine, and l-fucose were detected in the acid hydrolysate of the sheath by gas liquid chromatography. In addition to these sugars, β-GlcN-(1→4)-Glc and unidentified sugar were detected by analyzing the hydrolysate using high-performance liquid chromatography analysis. (1)H and (13)C NMR spectroscopy was used to identify a disaccharide composed of 4-deoxy-4-aminorhamnose (perosamine, Rha4N) and fucose. N-Acetyl-perosamine prepared from the disaccharide was polarimetric and exhibited a d-configuration. The previously unidentified disaccharide was found to be α-d-Rhap4N-(1→3)-d-Fuc. According to (1)H and (13)C NMR analyses, the deacetylated sheath-forming polysaccharide was found to h have a main chain of [→4)-β-d-GlcpN-(1→4)-β-d-Glcp-(1→]n, to which disaccharide side chains of α-d-Rhap4N-(1→3)-α-l-Fucp-(1→ were attached at position 3 of Glc.


International Journal of Biological Macromolecules | 2017

Elongation pattern and fine structure of the sheaths formed by Thiothrix nivea and Thiothrix fructosivorans

Yuta Kawasaki; Tomoyuki Endo; Atsuo Fujiwara; Keiko Kondo; Masato Katahira; Tadashi Nittami; Michio Sato; Minoru Takeda

Thiothrix strains are filamentous sulfur-oxidizing bacteria common in activated sludge. Some of the members, including Thiothrix nivea and T. fructosivorans, are known to form a microtubular sheath that covers a line of cells. The sheaths are assemblages of [→4)-β-d-GlcN-(1→4)-β-d-Glc-(1→]n modified with unusual deoxy sugars. In an attempt to elucidate the sheath-forming mechanism, the patterns of sheath formation and cell proliferation were determined in this study. Prior to analysis, both sheaths were confirmed to be highly de-N-acetylated. Sheaths in viable filaments were N-biotinylated followed by cultivation and then fluorescently immunostained. Epifluorescence microscopy of the filaments revealed ubiquitous elongation of the sheaths. For visualization of the cell proliferation pattern, the cell membrane was fluorescently stained. The epifluorescence images demonstrated that cell proliferation also proceeds ubiquitously, suggesting that sheath elongation proceeds surrounding an elongating cell. In addition, the fine structure of the Thiothrix filaments was analyzed by transmission electron microscopy employing a freeze-substitution technique. The micrographs of freeze-substituted filaments showed that the sheaths were thin and single layered. In contrast, the sheaths in chemically fixed filaments appeared thick and multilayered. Treatment with glutaraldehyde probably caused deformation of the sheaths. Supporting this possibility, the sheaths were found to be deformed or solubilized by N-acetylation.


Cell & Bioscience | 2016

The binding specificity of Translocated in LipoSarcoma/FUsed in Sarcoma with lncRNA transcribed from the promoter region of cyclin D1

Ryoma Yoneda; Shiho Suzuki; Tsukasa Mashima; Keiko Kondo; Takashi Nagata; Masato Katahira; Riki Kurokawa

BackgroundTranslocated in LipoSarcoma (TLS, also known as FUsed in Sarcoma) is an RNA/DNA binding protein whose mutation cause amyotrophic lateral sclerosis. In previous study, we demonstrated that TLS binds to long noncoding RNA, promoter-associated ncRNA-D (pncRNA-D), transcribed from the 5′ upstream region of cyclin D1 (CCND1), and inhibits the expression of CCND1.ResultsIn order to elucidate the binding specificity between TLS and pncRNA-D, we divided pncRNA-D into seven fragments and examined the binding with full-length TLS, TLS–RGG2–zinc finger–RGG3, and TLS–RGG3 by RNA pull down assay. As a result, TLS was able to bind to all the seven fragments, but the fragments containing reported recognition motifs (GGUG and GGU) tend to bind more solidly. The full-length TLS and TLS–RGG2–zinc finger–RGG3 showed a similar interaction with pncRNA-D, but the binding specificity of TLS–RGG3 was lower compared to the full-length TLS and TLS–RGG2–zinc finger–RGG3. Mutation in GGUG and GGU motifs dramatically decreased the binding, and unexpectedly, we could only detect weak interaction with the RNA sequence with stem loop structure.ConclusionThe binding of TLS and pncRNA-D was affected by the presence of GGUG and GGU sequences, and the C terminal domains of TLS function in the interaction with pncRNA-D.


Bioscience, Biotechnology, and Biochemistry | 2012

A Spatial Relationship between Sheath Elongation and Cell Proliferation in Sphaerotilus natans

Minoru Takeda; Takuto Umezu; Yuta Kawasaki; Shoichi Shimura; Keiko Kondo; Jun-ichi Koizumi

Sphaerotilus natans is a filamentous sheath-forming bacterium. A method of selective fluorescent-labeling of its sheath using conventional reagents was developed. Terminal expansion of the sheath was confirmed by this method. In addition, ubiquitous cell growth was revealed by sequential phase-contrast microscopy of a filament. Based on this and earlier reports, a model of the sheath formation is proposed.


Scientific Reports | 2018

Plastic roles of phenylalanine and tyrosine residues of TLS/FUS in complex formation with the G-quadruplexes of telomeric DNA and TERRA

Keiko Kondo; Tsukasa Mashima; Takanori Oyoshi; Ryota Yagi; Riki Kurokawa; Naohiro Kobayashi; Takashi Nagata; Masato Katahira

The length of a telomere is regulated via elongation and shortening processes. Telomeric DNA and telomeric repeat-containing RNA (TERRA), which both contain G-rich repeated sequences, form G-quadruplex structures. Previously, translocated in liposarcoma (TLS) protein, also known as fused in sarcoma (FUS) protein, was found to form a ternary complex with the G-quadruplex structures of telomeric DNA and TERRA. We then showed that the third RGG motif of TLS, the RGG3 domain, is responsible for the complex formation. However, the structural basis for their binding remains obscure. Here, NMR-based binding assaying revealed the interactions in the binary and ternary complexes of RGG3 with telomeric DNA or/and TERRA. In the ternary complex, tyrosine bound exclusively to TERRA, while phenylalanine bound exclusively to telomeric DNA. Thus, tyrosine and phenylalanine each play a central role in the recognition of TERRA and telomeric DNA, respectively. Surprisingly in the binary complexes, RGG3 used both tyrosine and phenylalanine residues to bind to either TERRA or telomeric DNA. We propose that the plastic roles of tyrosine and phenylalanine are important for RGG3 to efficiently form the ternary complex, and thereby regulate the telomere shortening.


International Journal of Biological Macromolecules | 2016

Presence of N-l-lactyl-d-perosamine residue in the sheath-forming polysaccharide of Thiothrix fructosivorans

Yuta Kawasaki; Keiko Kondo; Rie Narizuka; Tomoyuki Endo; Masato Katahira; Izuru Kawamura; Michio Sato; Minoru Takeda

Thiothrix fructosivorans forms a microtube (sheath) that encloses a line of cells. This sheath is an assemblage of [→4)-GlcN-(1→4)-Glc-(1→]n with side chains of Rha4N-(1→3)-Fuc(1→ at position 3 of Glc. The sheath-forming polysaccharide (SFP) may have some substitutions but this is not yet confirmed. To investigate the possible substitutions, the sheath was prepared by mild treatments. Solid-state NMR analysis suggested the presence of N-substitution. The sheath was hydrolyzed with concentrated HCl at 0°C, followed by derivatization with 4-aminobenzoic acid ethyl ester (ABEE). The presence of N-lactyl-Rha4N-Fuc-ABEE was suggested by NMR spectroscopy. Lactic acid was determined to be the l-isomer by chiral HPLC analysis. To estimate the N-lactylation degree, the sheath was N-acetylated. N-Acetyl-Rha4N-Fuc-ABEE and N-lactyl-Rha4N-Fuc-ABEE were then collectively recovered, and their abundance ratio was determined to be 1:4 by NMR analysis. When hydrolysis was performed at 40°C, GlcNAc-ABEE was obtained. For estimation of the N-acetylation degree, the sheath was N-acetylated with deuterated acetic anhydride and then N-acetyl-GlcN-ABEE was prepared. The content of deuterated N-acetyl-GlcN-ABEE was determined to be 50% based on the relative intensity of the acetyl proton signal in the 1D-(1)H NMR spectrum. It was concluded that Rha4N is mostly N-l-lactylated and GlcN is substoichiometrically N-acetylated.


International Journal of Biological Macromolecules | 2018

Enzymatic degradation of β-1,4-linked N-acetylglucosaminoglucan prepared from Thiothrix nivea

Minoru Takeda; Keiko Kondo; Shuhei Sanda; Daisuke Kan; Isabele Kazahaya Borges; Ichiro Suzuki; Masato Katahira

Thiothrix nivea is a filamentous sulfur-oxidizing bacterium commonly found in activated sludge. The filament of this bacterium is covered with a sheath. The sheath is an assemblage of macromolecular glucosaminoglucan (GG), [4)-β-d-GlcN-(1 → 4)-β-d-Glc-(1 → ]n, modified with an unidentified deoxy-sugar at position 3 of Glc. GG was obtained by dialysis after the partial hydrolysis of the sheath. The GG hydrogel was prepared by drying a GG solution. Then, the hydrogel was N-acetylated to prepare a stable hydrogel of N-acetylglucosaminoglucan (NGG), [4)-β-d-GlcNAc-(1 → 4)-β-d-Glc-(1 → ]n. The NGG hydrogel was stable in phosphate buffer but was disrupted by lysozyme addition, suggesting that NGG is susceptible to lysozyme degradation and has potential for medical use. The GG solution was N-acetylated to prepare a NGG suspension to confirm enzymatic degradation. The turbidity of the NGG suspension was decreased by lysozyme addition. Sugars released in the reaction mixture were derivatized with 4-aminobenzoic acid ethyl ester (ABEE) followed by HPLC analysis. Two major derivatives were detected, and their concentration was increased in reverse proportion to the turbidity of the reaction mixture. The derivatives were identified as GlcNAc-Glc-GlcNAc-Glc-ABEE and GlcNAc-Glc-ABEE by mass spectrometry. Consequently, NGG was found to be degraded by lysozyme via a mechanism similar to that of chitin degradation.

Collaboration


Dive into the Keiko Kondo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Minoru Takeda

Yokohama National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun-ichi Koizumi

Yokohama National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuta Kawasaki

Yokohama National University

View shared research outputs
Top Co-Authors

Avatar

Riki Kurokawa

Saitama Medical University

View shared research outputs
Top Co-Authors

Avatar

Ichiro Suzuki

Yokohama National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mina Yamada

Yokohama National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge