Keiko Okamura
Toyohashi University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Keiko Okamura.
Fems Microbiology Letters | 2011
Keiko Okamura; Akiko Kawai; Takeshi Yamada; Akira Hiraishi
Two strains of aerobic acidophilic chemoorganotrophic bacteria designed strains AP8(T) and AP9 were isolated from acid mine drainage and acidic soil, respectively. These isolates were gram-negative, nonmotile cocci and coccobacilli measuring 0.5-0.8 μm in diameter. Cells were capsulated. Colonies on solid media were pink colored. The pH range for growth was 3.0-6.0 (optimum pH 4.5). Sugars, gluconate, and some amino acids were good carbon and energy sources for growth. The main components of cellular fatty acids were C(15:0) iso and C(16:1) ω7c. Menaquinone-8 was the major quinone. The G+C content of genomic DNA was 59.5%. Both strains had identical sequences of 16S rRNA genes that were most closely related to that of the type strain of Acidobacterium capsulatum (96% similarity). There were major differences between the isolates and A. capsulatum in cell morphology, carbon nutrition, and fatty acid profiles. Based on these phylogenetic and phenotypic data, we propose the name Acidipila rosea gen. nov., sp. nov. to accommodate the novel isolates. The type strain is AP8(T) (NBRC 107607(T), KCTC 23427(T)).
International Journal of Systematic and Evolutionary Microbiology | 2009
Keiko Okamura; Toshio Kanbe; Akira Hiraishi
A bright pink to red-coloured, phototropic, purple non-sulfur bacterium, designated strain TUT3530(T), was isolated from pond water. Cells of the novel isolate were found to be Gram-negative, motile, budding rods. Cell extracts from phototrophically grown cultures had absorption maxima at 378, 482, 512, 550, 590, 800 and 850 nm, indicating the presence of bacteriochlorophyll a and carotenoids of the spirilloxanthin series. The intracytoplasmic membrane system was of the lamellar type. Anaerobic photo-organotrophy with simple organic acids such as pyruvate was the preferred mode of growth. Aerobic growth at full atmospheric oxygen tension and anaerobic denitrifying growth in darkness were also possible. Photolithotrophic growth occurred with thiosulfate, but not with sulfide or hydrogen, as the electron donor. No growth factors were required. The major whole-cell fatty acid was C(18 : 1)omega7c. The major quinones were ubiquinone-10 and rhodoquinone-10. A phylogenetic analysis based on 16S rRNA gene sequences and studies involving DNA-DNA hybridization demonstrated that strain TUT3530(T) occupies a distinct taxonomic position within the genus Rhodoplanes. On the basis of these data, strain TUT3530(T) represents a novel species of the genus Rhodoplanes, for which the name Rhodoplanes serenus sp. nov. is proposed. The type strain is TUT3530(T) (=DSM 18633(T)=NBRC 102049(T)).
Current Microbiology | 2012
Shinichi Takaichi; Ch. Sasikala; Ch. V. Ramana; Keiko Okamura; Akira Hiraishi
Phototrophic bacteria necessarily contain carotenoids for photosynthesis, and accumulate unusual carotenoids in some cases. The carotenoids in all established species of Rhodoplanes (Rpl.), a representative of phototrophic genera, were identified using spectroscopic methods. The major carotenoid was spirilloxanthin in Rpl. roseus and Rpl. serenus, and rhodopin in “Rpl. cryptolactis”. Rpl. elegans contained rhodopin, anhydrorhodovibrin, and spirilloxanthin. Rpl. pokkaliisoli contained not only rhodopin but also 1,1′-dihydroxylycopene and 3,4,3′,4′-tetrahydrospirilloxanthin. These variations in carotenoid composition suggested that Rpl. roseus and Rpl. serenus had normal substrate specificity of the carotenogenesis enzymes of CrtC (acyclic carotene 1,2-hydratase), CrtD (acyclic carotenoid 3,4-desaturase), and CrtF (acyclic 1-hydroxycarotenoid methyltransferase). On the other hand, CrtC of Rpl. elegans, CrtD of “Rpl. cryptolactis”, and CrtC, CrtD, and CrtF of Rpl. pokkaliisoli might have different characteristics from the usual activity of these normal enzymes in the normal spirilloxanthin pathway. These results suggest that the variation of carotenoids among the species of Rhodoplanes results from modified substrate specificity of the carotenogenesis enzymes involved.
International Journal of Systematic and Evolutionary Microbiology | 2017
Akira Hiraishi; Keiko Okamura
A strain of anoxygenic phototrophic bacteria isolated from paddy soil (designated strain TUT3615T) was studied taxonomically in comparison with Rhodopseudomonasstrain ATCC 17005 as its nearest phylogenetic relative. Strains TUT3615T and ATCC 17005 had budding rod-shaped cells and showed in vivo absorption maxima at 804 and 860 nm in the near infrared region, indicating the presence of bacteriochlorophyll a. The intracytoplasmic membrane system was of the lamellar type parallel to the cytoplasmic membrane. 16S rRNA gene sequence comparisons showed that strains TUT3615T and ATCC 17005 had a 99.7 % level of similarity to one another and were closest to Rhodopseudomonas palustris ATCC 17001T (98.6 % similarity) among the established species of the genus Rhodopseudomonas. Genomic DNA-DNA hybridization studies revealed that strains TUT3615T and ATCC 17005 had an average similarity level of 65 % to one another and of less than 40 % to the available type strains of Rhodopseudomonas species. Results of phenotypic studies showed that strains TUT3615T and ATCC 17005 could be differentiated from one another and from any previously described species of Rhodopseudomonas. The G+C contents of the genomic DNA of strain TUT3615T and ATCC 17005 were 66.3 and 66.5 mol%, respectively. Based on these data, we propose the name Rhodopseudomonas telluris sp. nov. for strain TUT3615T. The type strain is TUT3615T (=KCTC 23279T=NBRC 107609T). We suspend a proposal to reclassify strain ATCC 17005 as a novel species or subspecies until a genome-wide analysis provides more definite information on its taxonomic position.
International Journal of Systematic and Evolutionary Microbiology | 2015
Keiko Okamura; Akiko Kawai; Norio Wakao; Takeshi Yamada; Akira Hiraishi
Several strains of aerobic, acidophilic, chemo-organotrophic bacteria belonging to the genus Acidiphilium were isolated from an acid mine drainage (AMD) (pH 2.2) treatment plant. 16S rRNA gene sequence comparisons showed that most of the novel isolates formed a phylogenetically coherent group (designated Group Ia) distinguishable from any of the previously established species of the genus Acidiphilium at <98% similarity. This was supported by genomic DNA-DNA hybridization assays. The Group Ia isolates were characterized phenotypically by an oval cell morphology, non-motility, growth in the range pH 2.0-5.5 (optimum pH 3.5), lack of photosynthetic pigment and the presence of C19:0 cyclo ω8c as the main component of the cellular fatty acids and ubiquinone-10 as the major quinone. On the basis of these data, the name Acidiphilium iwatense sp. nov. is proposed to accommodate the Group Ia isolates, and the description of the genus Acidiphilium is emended. The type strain of Acidiphilium iwatense sp. nov. is MS8(T) ( =NBRC 107608(T)=KCTC 23505(T)).
Journal of Physics: Conference Series | 2013
Keiko Okamura; T Hisada; K Takata; Akira Hiraishi
Rapid and accurate identification of microbial species is essential task in microbiology and biotechnology. In prokaryotic systematics, genomic DNA-DNA hybridization is the ultimate tool to determine genetic relationships among bacterial strains at the species level. However, a practical problem in this assay is that the experimental procedure is laborious and time-consuming. In recent years, information on the 16S-23S rRNA gene internal transcribed spacer (ITS) region has been used to classify bacterial strains at the species and intraspecies levels. It is unclear how much information on the ITS region can reflect the genome that contain it. In this study, therefore, we evaluate the quantitative relationship between ITS DNA and entire genomic DNA similarities. For this, we determined ITS sequences of several species of anoxygenic phototrophic bacteria belonging to the order Rhizobiales, and compared with DNA-DNA relatedness among these species. There was a high correlation between the two genetic markers. Based on the regression analysis of this relationship, 70% DNA-DNA relatedness corresponded to 92% ITS sequence similarity. This suggests the usefulness of the ITS sequence similari ty as a criterion for determining the genospecies of the phototrophic bacteria. To avoid the effects of polymorphism bias of ITS on similarities, PCR products from all loci of ITS were used directly as genetic probes for comparison. The results of ITS DNA-DNA hybridization coincided well with those of genomic DNA-DNA relatedness. These collective data indicate that the whole ITS DNA-DNA similarity can be used as an alternative to genomic DNA-DNA similarity.
Current Biology | 2013
Atsushi Nakabachi; Reiko Ueoka; Kenshiro Oshima; Roberta Teta; Alfonso Mangoni; Mihaela Gurgui; Neil J. Oldham; Gerhild van Echten-Deckert; Keiko Okamura; Kohei Yamamoto; Hiromitsu Inoue; Moriya Ohkuma; Yuichi Hongoh; Shin-ya Miyagishima; Masahira Hattori; Jörn Piel; Takema Fukatsu
Microbes and Environments | 2007
Takayoshi Hisada; Keiko Okamura; Akira Hiraishi
Systematic and Applied Microbiology | 2013
Takeshi Yamada; Shinya Araki; Wakako Ikeda-Ohtsubo; Keiko Okamura; Akira Hiraishi; Hideyo Ueda; Yasuichi Ueda; Keisuke Miyauchi; Ginro Endo
Journal of General and Applied Microbiology | 2009
Keiko Okamura; Koji Takata; Akira Hiraishi
Collaboration
Dive into the Keiko Okamura's collaboration.
National Institute of Advanced Industrial Science and Technology
View shared research outputs