Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keiko Taguchi is active.

Publication


Featured researches published by Keiko Taguchi.


Nature Cell Biology | 2010

The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1.

Masaaki Komatsu; Hirofumi Kurokawa; Satoshi Waguri; Keiko Taguchi; Yoshinobu Ichimura; Yu-shin Sou; Izumi Ueno; Ayako Sakamoto; Kit I. Tong; Mihee Kim; Yasumasa Nishito; Shun-ichiro Iemura; Tohru Natsume; Takashi Ueno; Eiki Kominami; Hozumi Motohashi; Keiji Tanaka; Masayuki Yamamoto

Impaired selective turnover of p62 by autophagy causes severe liver injury accompanied by the formation of p62-positive inclusions and upregulation of detoxifying enzymes. These phenotypes correspond closely to the pathological conditions seen in human liver diseases, including alcoholic hepatitis and hepatocellular carcinoma. However, the molecular mechanisms and pathophysiological processes in these events are still unknown. Here we report the identification of a novel regulatory mechanism by p62 of the transcription factor Nrf2, whose target genes include antioxidant proteins and detoxification enzymes. p62 interacts with the Nrf2-binding site on Keap1, a component of Cullin-3-type ubiquitin ligase for Nrf2. Thus, an overproduction of p62 or a deficiency in autophagy competes with the interaction between Nrf2 and Keap1, resulting in stabilization of Nrf2 and transcriptional activation of Nrf2 target genes. Our findings indicate that the pathological process associated with p62 accumulation results in hyperactivation of Nrf2 and delineates unexpected roles of selective autophagy in controlling the transcription of cellular defence enzyme genes.


Genes to Cells | 2011

Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution

Keiko Taguchi; Hozumi Motohashi; Masayuki Yamamoto

The Keap1–Nrf2 regulatory pathway plays a central role in the protection of cells against oxidative and xenobiotic damage. Under unstressed conditions, Nrf2 is constantly ubiquitinated by the Cul3–Keap1 ubiquitin E3 ligase complex and rapidly degraded in proteasomes. Upon exposure to electrophilic and oxidative stresses, reactive cysteine residues of Keap1 become modified, leading to a decline in the E3 ligase activity, stabilization of Nrf2 and robust induction of a battery of cytoprotective genes. Biochemical and structural analyses have revealed that the intact Keap1 homodimer forms a cherry‐bob structure in which one molecule of Nrf2 associates with two molecules of Keap1 by using two binding sites within the Neh2 domain of Nrf2. This two‐site binding appears critical for Nrf2 ubiquitination. In many human cancers, missense mutations in KEAP1 and NRF2 genes have been identified. These mutations disrupt the Keap1–Nrf2 complex activity involved in ubiquitination and degradation of Nrf2 and result in constitutive activation of Nrf2. Elevated expression of Nrf2 target genes confers advantages in terms of stress resistance and cell proliferation in normal and cancer cells. Discovery and development of selective Nrf2 inhibitors should make a critical contribution to improved cancer therapy.


Cancer Cell | 2012

Nrf2 Redirects Glucose and Glutamine into Anabolic Pathways in Metabolic Reprogramming

Yoichiro Mitsuishi; Keiko Taguchi; Tatsuhiro Shibata; Toshihiro Nukiwa; Hiroyuki Aburatani; Masayuki Yamamoto; Hozumi Motohashi

Cancer cells consume large quantities of nutrients and maintain high levels of anabolism. Recent studies revealed that various oncogenic pathways are involved in modulation of metabolism. Nrf2, a key regulator for the maintenance of redox homeostasis, has been shown to contribute to malignant phenotypes of cancers including aggressive proliferation. However, the mechanisms with which Nrf2 accelerates proliferation are not fully understood. Here, we show that Nrf2 redirects glucose and glutamine into anabolic pathways, especially under the sustained activation of PI3K-Akt signaling. The active PI3K-Akt pathway augments the nuclear accumulation of Nrf2 and enables Nrf2 to promote metabolic activities that support cell proliferation in addition to enhancing cytoprotection. The functional expansion of Nrf2 reinforces the metabolic reprogramming triggered by proliferative signals.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Keap1 degradation by autophagy for the maintenance of redox homeostasis

Keiko Taguchi; Nanako Fujikawa; Masaaki Komatsu; Tetsuro Ishii; Michiaki Unno; Takaaki Akaike; Hozumi Motohashi; Masayuki Yamamoto

The Kelch-like ECH-associated protein 1 (Keap1)-NF-E2-related factor 2 (Nrf2) system is essential for cytoprotection against oxidative and electrophilic insults. Under unstressed conditions, Keap1 serves as an adaptor for ubiquitin E3 ligase and promotes proteasomal degradation of Nrf2, but Nrf2 is stabilized when Keap1 is inactivated under oxidative/electrophilic stress conditions. Autophagy-deficient mice show aberrant accumulation of p62, a multifunctional scaffold protein, and develop severe liver damage. The p62 accumulation disrupts the Keap1-Nrf2 association and provokes Nrf2 stabilization and accumulation. However, individual contributions of p62 and Nrf2 to the autophagy-deficiency–driven liver pathogenesis have not been clarified. To examine whether Nrf2 caused the liver injury independent of p62, we crossed liver-specific Atg7::Keap1-Alb double-mutant mice into p62- and Nrf2-null backgrounds. Although Atg7::Keap1-Alb::p62−/− triple-mutant mice displayed defective autophagy accompanied by the robust accumulation of Nrf2 and severe liver injury, Atg7::Keap1-Alb::Nrf2−/− triple-mutant mice did not show any signs of such hepatocellular damage. Importantly, in this study we noticed that Keap1 accumulated in the Atg7- or p62-deficient mouse livers and the Keap1 level did not change by a proteasome inhibitor, indicating that the Keap1 protein is constitutively degraded through the autophagy pathway. This finding is in clear contrast to the Nrf2 degradation through the proteasome pathway. We also found that treatment of cells with tert-butylhydroquinone accelerated the Keap1 degradation. These results thus indicate that Nrf2 accumulation is the dominant cause to provoke the liver damage in the autophagy-deficient mice. The autophagy pathway maintains the integrity of the Keap1-Nrf2 system for the normal liver function by governing the Keap1 turnover.


Carcinogenesis | 2009

Genetic versus chemoprotective activation of Nrf2 signaling: overlapping yet distinct gene expression profiles between Keap1 knockout and triterpenoid-treated mice

Melinda S. Yates; Quynh T. Tran; Patrick M. Dolan; William O. Osburn; Soona Shin; Colin Craig McCulloch; Jay B. Silkworth; Keiko Taguchi; Masayuki Yamamoto; Charlotte R. Williams; Karen T. Liby; Michael B. Sporn; Thomas R. Sutter; Thomas W. Kensler

Loss of NF-E2-related factor 2 (Nrf2) signaling increases susceptibility to acute toxicity, inflammation and carcinogenesis in mice due to the inability to mount adaptive responses. In contrast, disruption of Keap1 (a cytoplasmic modifier of Nrf2 turnover) protects against these stresses in mice, although inactivating mutations in Keap1 have been identified recently in some human cancers. Global characterization of Nrf2 activation is important to exploit this pathway for chemoprevention in healthy, yet at-risk individuals and also to elucidate the consequences of hijacking the pathway in Keap1-mutant human cancers. Liver-targeted conditional Keap1-null, Albumin-Cre:Keap1((flox/-)) (CKO) mice provide a model of genetic activation of Nrf2 signaling. By coupling global gene expression analysis of CKO mice with analysis of pharmacologic activation using the synthetic oleanane triterpenoid 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im), we are able to gain insight into pathways affected by Nrf2 activation. CDDO-Im is an extremely potent activator of Nrf2 signaling. CKO mice were used to identify genes modulated by genetic activation of Nrf2 signaling. The CKO response was compared with hepatic global gene expression changes in wild-type mice treated with CDDO-Im at a maximal Nrf2 activating dose. The results show that genetic and pharmacologic activation of Nrf2 signaling modulates pathways beyond detoxication and cytoprotection, with the largest cluster of genes associated with lipid metabolism. Genetic activation of Nrf2 results in much larger numbers of detoxication and lipid metabolism gene changes. Additionally, analysis of pharmacologic activation suggests that Nrf2 is the primary mediator of CDDO-Im activity, though other cell-signaling targets are also modulated following an oral dose of 30 micromol/kg.


Journal of Cell Biology | 2010

Ubiquitin accumulation in autophagy-deficient mice is dependent on the Nrf2-mediated stress response pathway: a potential role for protein aggregation in autophagic substrate selection

Brigit E. Riley; Stephen E. Kaiser; Thomas A. Shaler; Aylwin Ng; Taichi Hara; Mark S. Hipp; Kasper Lage; Ramnik J. Xavier; Kwon-Yul Ryu; Keiko Taguchi; Masayuki Yamamoto; Keiji Tanaka; Noboru Mizushima; Masaaki Komatsu; Ron R. Kopito

Inactivation of the essential autophagy gene Atg5 results in selective accumulation of aggregation-prone proteins independently of substrate ubiquitination.


Molecular and Cellular Biology | 2010

Genetic Analysis of Cytoprotective Functions Supported by Graded Expression of Keap1

Keiko Taguchi; Jonathan M. Maher; Takafumi Suzuki; Hozumi Motohashi; Masayuki Yamamoto

ABSTRACT Keap1 regulates Nrf2 activity in response to xenobiotic and oxidative stresses. Nrf2 is an essential regulator of cytoprotective genes. Keap1-null mice are lethal by weaning age due to malnutrition caused by severe hyperkeratosis of the upper digestive tract. Analysis of Keap1::Nrf2 double mutant mice revealed that currently recognizable phenotypes of Keap1-null mice are all attributable to constitutive activation of Nrf2. We previously reported that hepatocyte-specific Keap1 knockout (Keap1flox/−::Albumin-Cre) mice are viable and more resistant to acute toxicity of acetaminophen (APAP). In the current study, we found that the floxed Keap1 allele is hypomorphic and that Keap1 expression was decreased in all examined tissues of Keap1flox/− mice. Taking advantage of the hypomorphic phenotype of Keap1flox/− mice, we examined the effects of graded reduction of Keap1 expression in adult mice. When challenged with APAP, Keap1flox/− mice were more protected from mortality than wild-type and even Keap1flox/−::Albumin-Cre mice. In contrast, a decrease in Keap1 levels to less than 50% resulted in increased mortality in a study of 2-year-old mice. These results support our contention that the benefits of Nrf2 activation in acute toxicity are hormetic and that constitutive Nrf2 activation beyond a certain threshold is rather disadvantageous to long-term survival.


Toxicological Sciences | 2008

Genetic or Pharmacologic Amplification of Nrf2 Signaling Inhibits Acute Inflammatory Liver Injury in Mice

William O. Osburn; Melinda S. Yates; Patrick D. Dolan; Sining Chen; Karen T. Liby; Michael B. Sporn; Keiko Taguchi; Masayuki Yamamoto; Thomas W. Kensler

Oxidative stress-mediated destruction of normal parenchymal cells during hepatic inflammatory responses contributes to the pathogenesis of immune-mediated hepatitis and is implicated in the progression of acute inflammatory liver injury to chronic inflammatory liver disease. The transcription factor NF-E2-related factor 2 (Nrf2) regulates the expression of a battery of antioxidative enzymes and Nrf2 signaling can be activated by small-molecule drugs that disrupt Keap1-mediated repression of Nrf2 signaling. Therefore, genetic and pharmacologic approaches were used to activate Nrf2 signaling to assess protection against inflammatory liver injury. Profound increases in indicators of cell death were observed in both Nrf2 wild-type (Nrf2-WT) mice and Nrf2-disrupted (Nrf2-KO) mice 24 h following intravenous injection of concanavalin A (12.5 mg/kg, ConA), a model for T cell-mediated acute inflammatory liver injury. However, hepatocyte-specific conditional Keap1 null (Alb-Cre:Keap1(flox/-), cKeap1-KO) mice with constitutively enhanced expression of Nrf2-regulated antioxidative genes as well as Nrf2-WT mice but not Nrf2-KO mice pretreated with three daily doses of a triterpenoid that potently activates Nrf2 (30 mumol/kg, cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl-imidazolide [CDDO-Im]) were highly resistant to ConA-mediated inflammatory liver injury. CDDO-Im pretreatment of both Nrf2-WT and Nrf2-KO mice resulted in equivalent suppression of serum proinflammatory soluble proteins suggesting that the hepatoprotection afforded by CDDO-Im pretreatment of Nrf2-WT mice but not Nrf2-KO mice was not due to suppression of systemic proinflammatory signaling, but instead was due to activation of Nrf2 signaling in the liver. Enhanced hepatic expression of Nrf2-regulated antioxidative genes inhibited inflammation-mediated oxidative stress, thereby preventing hepatocyte necrosis. Attenuation of hepatocyte death in cKeap1-KO mice and CDDO-Im pretreated Nrf2-WT mice resulted in decreased late-phase proinflammatory gene expression in the liver thereby diminishing the sustained influx of inflammatory cells initially stimulated by the ConA challenge. Taken together, these results clearly illustrate that targeted cytoprotection of hepatocytes through Nrf2 signaling during inflammation prevents the amplification of inflammatory responses in the liver.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2008

Ursodeoxycholic acid stimulates Nrf2-mediated hepatocellular transport, detoxification, and antioxidative stress systems in mice

Kosuke Okada; Junichi Shoda; Keiko Taguchi; Jonathan M. Maher; Kaoru Ishizaki; Yoshimi Inoue; Makio Ohtsuki; Nobuharu Goto; Koichi Takeda; Hirotoshi Utsunomiya; Koji Oda; Eiji Warabi; Tetsuro Ishii; Keiko Osaka; Ichinosuke Hyodo; Masayuki Yamamoto

The protective action of ursodeoxycholic acid (UDCA) in cholestatic liver diseases may be mediated by choleresis, detoxification, and cytoprotection against oxidative stress. Nrf2, one transcription factor, serves as a cellular stress sensor and is a key regulator for hepatic induction of detoxifying enzymes, antioxidative stress genes, and numerous Mrp family members. We aimed to investigate whether UDCA induces hepatic Mrp expression along with that of detoxifying enzymes and antioxidative stress genes via the Nrf2 transcriptional pathway. The protein level, subcellular localization, and mRNA level of Mrp family members were assessed in livers of Keap1 gene-knockdown (Keap1-kd) mice and those of UDCA-fed wild-type (WT) and Nrf2 gene-null (Nrf2-null) mice. Nuclear levels of Nrf2 in livers of Keap1-kd mice markedly increased, resulting in constitutive activation of Nrf2. Keap1-kd mice have high-level expression of hepatic Mrp2, Mrp3, and Mrp4 relative to WT mice. UDCA potently increased nuclear Nrf2 expression level in livers of WT mice, and the treatment showed maximal hepatic induction of Mrp2, Mrp3, and Mrp4 in association with enhanced membranous localizations in an Nrf2-dependent manner. UDCA similarly increased nuclear Nrf2 expression level in rat hepatocytes. Chromatin immunoprecipitation assays using mouse hepatocytes revealed the binding of Nrf2 to antioxidant response elements in the promoter regions of Mrp2, Mrp3, and Mrp4. These findings demonstrate an important role of Nrf2 in the induction of Mrp family members in livers and suggest that a therapeutic mechanism of UDCA action is, via Nrf2 activation, a stimulation of detoxification and antioxidative stress systems, along with Mrp-mediated efflux transport.


Carcinogenesis | 2010

Nrf2-deficiency creates a responsive microenvironment for metastasis to the lung

Hironori Satoh; Takashi Moriguchi; Keiko Taguchi; Jun Takai; Jonathan M. Maher; Takafumi Suzuki; Paul T. Winnard; Venu Raman; Masahito Ebina; Toshihiro Nukiwa; Masayuki Yamamoto

The Nrf2 transcription factor is crucial for regulating the cellular defense against various carcinogens. However, relationship between host Nrf2 and cancer metastasis remains unexplored. To address this issue, we examined susceptibility of Nrf2-deficient mice to pulmonary cancer metastasis following implantation of the mouse Lewis lung carcinoma (3LL) cell line. Nrf2-deficient mice reproducibly exhibited a higher number of pulmonary metastatic nodules than wild-type mice did. The lung and bone marrow (BM) of cancer-bearing Nrf2-deficient mice contained increased numbers of inflammatory cells, including myeloid-derived suppressor cells (MDSCs), a potent population of immunosuppressive cells. MDSCs can attenuate CD8(+) T-cell immunity through modification of the T-cell receptor complex exploiting reactive oxygen species (ROS). MDSCs of Nrf2-deficient mice retained elevated levels of ROS relative to wild-type mice. BM transplantation experiments revealed functional disturbance in the hematopoietic and immune systems of Nrf2-deficient mice. Wild-type recipient mice with Nrf2-deficient BM cells showed increased levels of lung metastasis after cancer cell inoculation. These mice exhibited high-level accumulation of ROS in MDSCs, which showed very good coincidence to the decrease of splenic CD8(+) T-cells. In contrast, Keap1-knockdown mutant mice harboring high-level Nrf2 expression displayed increased resistance against the cancer cell metastasis to the lung, accompanied by a decrease in ROS in the MDSCs fraction. Our results thus reveal a novel function for Nrf2 in the prevention of cancer metastasis, presumably by its ability to preserve the redox balance in the hematopoietic and immune systems.

Collaboration


Dive into the Keiko Taguchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daigo Sumi

Tokushima Bunri University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge