Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keir M. Balla is active.

Publication


Featured researches published by Keir M. Balla.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Identification of dendritic antigen-presenting cells in the zebrafish

Geanncarlo Lugo-Villarino; Keir M. Balla; David L. Stachura; Karina Bañuelos; Miriam B. F. Werneck; David Traver

In mammals, dendritic cells (DCs) form the key link between the innate and adaptive immune systems. DCs act as immune sentries in various tissues and, upon encountering pathogen, engulf and traffic foreign antigen to secondary lymphoid tissues, stimulating antigen-specific T lymphocytes. Although DCs are of fundamental importance in orchestrating the mammalian immune response, their presence and function in nonmammalian vertebrates is largely unknown. Because teleosts possess one of the earliest recognizable adaptive immune systems, we sought to identify antigen-presenting cells (APCs) in the zebrafish to better understand the potential origins of DCs and their evolutionary relationship to lymphocytes. Here we present the identification and characterization of a zebrafish APC subset strongly resembling mammalian DCs. Rare DCs are present in various adult tissues, and can be enriched by their affinity for the lectin peanut agglutinin (PNA). We show that PNAhi myeloid cells possess the classical morphological features of mammalian DCs as revealed by histochemical and ultrastructural analyses, phagocytose-labeled bacterial preparations in vivo, and exhibit expression of genes associated with DC function and antigen presentation, including il12, MHC class II invariant chain iclp1, and csf1r. Importantly, we show that PNAhi cells can activate T lymphocytes in an antigen-dependent manner. Together, these studies suggest that the cellular constituents responsible for antigen presentation are remarkably conserved from teleosts to mammals, and indicate that the zebrafish may serve as a unique model to study the origin of APC subsets and their evolutionary role as the link between the innate and adaptive immune systems.


Blood | 2010

Eosinophils in the zebrafish: prospective isolation, characterization, and eosinophilia induction by helminth determinants

Keir M. Balla; Geanncarlo Lugo-Villarino; Jan M. Spitsbergen; David L. Stachura; Yan Hu; Karina Bañuelos; Octavio Romo-Fewell; Raffi V. Aroian; David Traver

Eosinophils are granulocytic leukocytes implicated in numerous aspects of immunity and disease. The precise functions of eosinophils, however, remain enigmatic. Alternative models to study eosinophil biology may thus yield novel insights into their function. Eosinophilic cells have been observed in zebrafish but have not been thoroughly characterized. We used a gata2:eGFP transgenic animal to enable prospective isolation and characterization of zebrafish eosinophils, and demonstrate that all gata2(hi) cells in adult hematopoietic tissues are eosinophils. Although eosinophils are rare in most organs, they are readily isolated from whole kidney marrow and abundant within the peritoneal cavity. Molecular analyses demonstrate that zebrafish eosinophils express genes important for the activities of mammalian eosinophils. In addition, gata2(hi) cells degranulate in response to helminth extract. Chronic exposure to helminth- related allergens resulted in profound eosinophilia, demonstrating that eosinophil responses to allergens have been conserved over evolution. Importantly, infection of adult zebrafish with Pseudocapillaria tomentosa, a natural nematode pathogen of teleosts, caused marked increases in eosinophil number within the intestine. Together, these observations support a conserved role for eosinophils in the response to helminth antigens or infection and provide a new model to better understand how parasitic worms activate, co-opt, or evade the vertebrate immune response.


Science Signaling | 2011

Small Molecule–Mediated Activation of the Integrin CD11b/CD18 Reduces Inflammatory Disease

Dony Maiguel; Mohd Hafeez Faridi; Changli Wei; Yoshihiro Kuwano; Keir M. Balla; Dayami Hernandez; Constantinos J. Barth; Geanncarlo Lugo; Mary E. Donnelly; Ali Nayer; Luis F. Moita; Stephan C. Schürer; David Traver; Phillip Ruiz; Roberto I. Vazquez-Padron; Klaus Ley; Jochen Reiser; Vineet Gupta

Drugs that activate integrins inhibit leukocyte recruitment to sites of inflammation. Stimulated to Stop The recruitment of leukocytes from the blood to sites of injury in tissues is mediated by interactions between integrins on the surface of leukocytes and ligands on endothelial cells that line the blood vessels. In animals, treatment with integrin antagonists reduces the recruitment of leukocytes from the circulation to tissue sites, but this strategy is not effective in humans. Maiguel et al. took the alternative approach of stimulating integrin activation with small-molecule agonists, which increased the extent of leukocyte adhesion to the endothelium and reduced the number of cells that reached sites of tissue damage in a number of animal models, thus reducing inflammation. Together, these data suggest that stimulating, rather than blocking, integrin activation may be an effective therapy to reduce inflammation. The integrin CD11b/CD18 (also known as Mac-1), which is a heterodimer of the αM (CD11b) and β2 (CD18) subunits, is critical for leukocyte adhesion and migration and for immune functions. Blocking integrin-mediated leukocyte adhesion, although beneficial in experimental models, has had limited success in treating inflammatory diseases in humans. Here, we used an alternative strategy of inhibiting leukocyte recruitment by activating CD11b/CD18 with small-molecule agonists, which we term leukadherins. These compounds increased the extent of CD11b/CD18-dependent cell adhesion of transfected cells and of primary human and mouse neutrophils, which resulted in decreased chemotaxis and transendothelial migration. Leukadherins also decreased leukocyte recruitment and reduced arterial narrowing after injury in rats. Moreover, compared to a known integrin antagonist, leukadherins better preserved kidney function in a mouse model of experimental nephritis. Leukadherins inhibited leukocyte recruitment by increasing leukocyte adhesion to the inflamed endothelium, which was reversed with a blocking antibody. Thus, we propose that pharmacological activation of CD11b/CD18 offers an alternative therapeutic approach for inflammatory diseases.


Cellular Microbiology | 2013

Caenorhabditis elegans as a model for intracellular pathogen infection

Keir M. Balla; Emily R. Troemel

The genetically tractable nematode Caenorhabditis elegans is a convenient host for studies of pathogen infection. With the recent identification of two types of natural intracellular pathogens of C. elegans, this host now provides the opportunity to examine interactions and defence against intracellular pathogens in a whole‐animal model for infection. C. elegans is the natural host for a genus of microsporidia, which comprise a phylum of fungal‐related pathogens of widespread importance for agriculture and medicine. More recently, C. elegans has been shown to be a natural host for viruses related to the Nodaviridae family. Both microsporidian and viral pathogens infect the C. elegans intestine, which is composed of cells that share striking similarities to human intestinal epithelial cells. Because C. elegans nematodes are transparent, these infections provide a unique opportunity to visualize differentiated intestinal cells in vivo during the course of intracellular infection. Together, these two natural pathogens of C. elegans provide powerful systems in which to study microbial pathogenesis and host responses to intracellular infection.


PLOS Pathogens | 2015

A wild C. elegans strain has enhanced epithelial immunity to a natural microsporidian parasite.

Keir M. Balla; Erik C. Andersen; Emily R. Troemel

Microbial pathogens impose selective pressures on their hosts, and combatting these pathogens is fundamental to the propagation of a species. Innate immunity is an ancient system that provides the foundation for pathogen resistance, with epithelial cells in humans increasingly appreciated to play key roles in innate defense. Here, we show that the nematode C. elegans displays genetic variation in epithelial immunity against intestinal infection by its natural pathogen, Nematocida parisii. This pathogen belongs to the microsporidia phylum, which comprises a large phylum of over 1400 species of fungal-related parasites that can infect all animals, including humans, but are poorly understood. Strikingly, we find that a wild C. elegans strain from Hawaii is able to clear intracellular infection by N. parisii, with this ability restricted to young larval animals. Notably, infection of older larvae does not impair progeny production, while infection of younger larvae does. The early-life immunity of Hawaiian larvae enables them to produce more progeny later in life, providing a selective advantage in a laboratory setting—in the presence of parasite it is able to out-compete a susceptible strain in just a few generations. We show that enhanced immunity is dominant to susceptibility, and we use quantitative trait locus mapping to identify four genomic loci associated with resistance. Furthermore, we generate near-isogenic strains to directly demonstrate that two of these loci influence resistance. Thus, our findings show that early-life immunity of C. elegans against microsporidia is a complex trait that enables the host to produce more progeny later in life, likely improving its evolutionary success.


Nature microbiology | 2016

Cell-to-cell spread of microsporidia causes Caenorhabditis elegans organs to form syncytia

Keir M. Balla; Robert J. Luallen; Malina A. Bakowski; Emily R. Troemel

The growth of pathogens is dictated by their interactions with the host environment1. Obligate intracellular pathogens undergo several cellular decisions as they progress through their life cycles inside host cells2. We have studied this process for microsporidian species in the genus Nematocida as they grew and developed inside their co-evolved animal host, Caenorhabditis elegans3–5. We found that microsporidia can restructure multicellular host tissues into a single contiguous multinucleate cell. In particular, we found that all three Nematocida species we studied were able to spread across the cells of C. elegans tissues before forming spores, with two species causing syncytial formation in the intestine and one species causing syncytial formation in the muscle. We also found that the decision to switch from replication to differentiation in Nematocida parisii was altered by the density of infection, suggesting that environmental cues influence the dynamics of the pathogen life cycle. These findings show how microsporidia can maximize the use of host space for growth and that environmental cues in the host can regulate a developmental switch in the pathogen.


bioRxiv | 2016

Cell-to-cell spread of microsporidia causes C. elegans organs to form syncytia

Keir M. Balla; Robert J. Luallen; Malina A. Bakowski; Emily R. Troemel

The growth of pathogens is dictated by their interactions with the host environment. Many obligate intracellular pathogens undergo several cellular decisions as they progress through their life cycles inside of host cells. We studied this process for several species of microsporidia in the genus Nematocida in their co-evolved animal host Caenorhabditis elegans. We found that microsporidia can restructure multicellular host tissues into a single contiguous multinucleate cell. In particular, we found that all three Nematocida species we studied were able to spread across the cells of C. elegans tissues before forming spores, with two species causing syncytial formation in the intestine, and one species causing syncytial formation in the muscle. We also found that the decision to switch from replication to differentiation in N. parisii was altered by the density of infection, suggesting that environmental cues influence the dynamics of the pathogen life cycle. These findings show how microsporidia can maximize the use of host space for growth, and that environmental cues in the host can regulate a developmental switch in the pathogen.


bioRxiv | 2016

Identification of microsporidia host-exposed proteins reveals a repertoire of large paralogous gene families and rapidly evolving proteins

Aaron W. Reinke; Keir M. Balla; Eric J. Bennett; Emily R. Troemel

Pathogens use a variety of secreted and surface proteins to interact with and manipulate their hosts, but a systematic approach for identifying such proteins has been lacking. To identify these ‘host-exposed’ proteins, we used spatially restricted enzymatic tagging followed by mass spectrometry analysis of C. elegans infected with two species of Nematocida microsporidia. We identified 82 microsporidia proteins inside of intestinal cells, including several pathogen proteins in the nucleus. These microsporidia proteins are enriched in targeting signals, are rapidly evolving, and belong to large, Nematocida-specific gene families. We also find that large, species-specific families are common throughout microsporidia species. Our data suggest that the use of a large number of rapidly evolving species-specific proteins represents a common strategy for these intracellular pathogens to interact with their hosts. The unbiased method described here for identifying potential pathogen effectors represents a powerful approach for the study of a broad range of pathogens.


bioRxiv | 2018

Natural variation in the C. elegans autophagy response and clearance of intracellular microsporidia

Keir M. Balla; V. Lazetic; Emily R. Troemel

Natural genetic variation can determine the outcome of an infection, and can reflect the co- evolutionary battle between hosts and pathogens. We previously found that a natural variant of the nematode C. elegans from Hawaii (HW) has increased resistance against natural microsporidian pathogens in the Nematocida genus compared to the standard laboratory strain of N2. Strikingly, HW animals can clear infection, while N2 animals cannot. HW animals can clear infection only at the first larval stage of life, which is when Nematocida imposes selective pressure on this host. Here we investigate how this clearance ability relates to xenophagy, which is the process of autophagy used for degrading intracellular microbes. We find there is much better targeting of autophagy machinery to parasites under conditions where they are cleared. In particular, ubiquitin targeting to Nematocida cells correlates very well with their subsequent clearance in terms of timing, host strain and age, as well as Nematocida species. Furthermore, clearance correlates with targeting of the LGG-2/LC3 autophagy protein to parasite cells, with HW animals having much more efficient targeting of LGG-2 to parasite cells than N2 animals. Surprisingly, however, we found that HW lgg-2 mutants still can clear Nematocida infection, although they have increased pathogen load early in infection. These findings indicate that lgg-2 regulates intracellular colonization of microsporidia inside intestinal cells, and a non-lgg-2-mediated process controls clearance. Thus, natural variation in xenophagy protein targeting correlates with, but is not required for clearance in this natural infection model.Natural genetic variation can determine the outcome of an infection, and often reflects the co-evolutionary battle between hosts and pathogens. We previously found that a natural variant of the nematode Caenorhabditis elegans from Hawaii (HW) has increased resistance against natural microsporidian pathogens in the Nematocida genus, when compared to the standard laboratory strain of N2. In particular, HW animals can clear infection, while N2 animals cannot. In addition, HW animals have lower levels of intracellular colonization of Nematocida compared to N2. Here we investigate how this natural variation in resistance relates to autophagy. We found that there is much better targeting of autophagy-related machinery to parasites under conditions where they are cleared. In particular, ubiquitin targeting to Nematocida cells correlates very well with their subsequent clearance in terms of timing, host strain and age, as well as Nematocida species. Furthermore, clearance correlates with targeting of the LGG-2/LC3 autophagy protein to parasite cells, with HW animals having much more efficient targeting of LGG-2 to parasite cells than N2 animals. Surprisingly, however, we found that lgg-2 is not required to clear infection. Instead we found that loss of lgg-2 leads to increased intracellular colonization in the HW background, although interestingly, it does not affect colonization in the N2 background. Altogether our results suggest that there is natural genetic variation in an lgg-2-dependent process that regulates intracellular levels of microsporidia at a very early stage of infection prior to clearance.


Cell Host & Microbe | 2012

C. elegans Detects Pathogen-Induced Translational Inhibition to Activate Immune Signaling

Tiffany L. Dunbar; Zhi Yan; Keir M. Balla; Margery G. Smelkinson; Emily R. Troemel

Collaboration


Dive into the Keir M. Balla's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Traver

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge