Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keishi Suga is active.

Publication


Featured researches published by Keishi Suga.


Langmuir | 2013

Detection of nanosized ordered domains in DOPC/DPPC and DOPC/Ch binary lipid mixture systems of large unilamellar vesicles using a TEMPO quenching method.

Keishi Suga; Hiroshi Umakoshi

Nanosized ordered domains formed in 1,2-dioleoyl-sn-glycero-3-phosphocholine/1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DOPC/DPPC) and DOPC/cholesterol (Ch) liposomes were characterized using a newly developed (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) quenching method. The membrane fluidity of the DOPC/DPPC liposomes, evaluated by the use of 1,6-diphenyl-1,3,5-hexatriene (DPH), increased significantly above their phase-transition temperature. The fluorescence spectra of 6-lauroyl-2-dimethylamino naphthalene (Laurdan) indicated the formation of an immiscible ordered phase in the DOPC/DPPC (50/50) liposomal membrane at 30 °C. The analysis of the membrane polarity indicated that the surface of the liquid-disordered phase was hydrated whereas that of the ordered phase was dehydrated. DOPC/DPPC and DOPC/Ch (70/30) liposomes exhibited heterogeneous membranes, indicating that nanosized ordered domains formed on the surface of the DOPC/DPPC liposomes. The size of these nanosized ordered domains was estimated using the TEMPO quenching method. Because TEMPO can quench DPH distributed in the disordered phases, the remaining fluorescence from DPH is proportional to the size of the ordered domain. The domain sizes calculated for DOPC/DPPC (50/50), DOPC/DPPC (25/75), DOPC/Ch (70/30), and DOPC/DPPC/Ch (40/40/20) were 13.9, 36.2, 13.2, and 35.5 Å, respectively.


Journal of Bioscience and Bioengineering | 2009

Charged liposome affects the translation and folding steps of in vitro expression of green fluorescent protein

Hiroshi Umakoshi; Keishi Suga; Huong Thi Bui; Masato Nishida; Toshinori Shimanouchi; Ryoichi Kuboi

The role of the charged liposome on the in vitro expression of green fluorescent protein (GFP) was investigated, focusing on its elemental steps such as transcription, translation and folding. The total GFP expression was enhanced to 145% when a neutral liposome (POPC: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocoline) was added externally to a cell-free translation system. On the contrary, the addition of the charged liposome composed of POPC with anionic 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPG) or cationic stearyl amine (SA) inhibited the total GFP expression, depending on the surface charge density of liposome. In transcription, the RNA synthesis was enhanced regardless of the variation of the surface charge, indicating that transcription was enhanced due to the stabilization of RNA structure by its hydrophobic interaction with liposome. Translation was inhibited by cationic liposome although it was enhanced by anionic liposome and neutral liposome. On the other hand, the folding was not inhibited in the presence of neutral liposome, whereas anionic liposome and cationic liposome inhibited the folding in proportion to the their surface charges, suggesting that the total GFP expression was controlled by a charged liposome in the translation step and folding step.


ACS Applied Materials & Interfaces | 2015

Chiral Recognition of L-Amino Acids on Liposomes Prepared with L-Phospholipid.

Takaaki Ishigami; Keishi Suga; Hiroshi Umakoshi

In this study, we demonstrated that liposomes composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) can recognize several l-amino acids, but not their d-enantiomers, by analyzing their adsorptive behavior and using circular dichroism spectroscopy. Changes in liposomal membrane properties, determined based on fluorescent probe analysis and differential scanning calorimetry, were induced by l-amino acid binding. UV resonance Raman spectroscopy analysis suggested that the chiral recognition was mediated by electrostatic, hydrophobic, and hydrogen bond interactions, where the recognition site could therefore be constructed on the DPPC membrane. Our findings clearly indicate the potential function of liposomes in asymmetric recognition.


Langmuir | 2014

Systematical Characterization of Phase Behaviors and Membrane Properties of Fatty Acid/Didecyldimethylammonium Bromide Vesicles

Keishi Suga; Tomoya Yokoi; Dai Kondo; Keita Hayashi; Seiichi Morita; Yukihiro Okamoto; Toshinori Shimanouchi; Hiroshi Umakoshi

Fatty acids (FAs) are known to form vesicle structures, depending on the surrounding pH conditions. In this study, we prepared vesicles by mixing FAs and a cationic surfactant, and then investigated their physicochemical properties using fluorescence spectroscopy and dielectric dispersion analysis (DDA). The assemblies formed from oleic acid (OA) and linoleic acid (LA) were modified by adding didecyldimethylammonium bromide (DDAB). The phase state of FA/DDAB mixtures was investigated with pH titration curves and turbidity measurements. The trigonal diagram of FA/ionized FA/DDAB was successfully drawn to understand the phase behaviors of FA/DDAB systems. The analysis of fluidities in the interior of the membrane with use of 1,6-diphenyl-1,3,5-hexatriene (DPH) indicated that the membrane fluidities of OA/DDAB and LA/DDAB at pH 8.5 slightly decreased in proportion to the molar ratio of DDAB in FA/DDAB systems. The fluorescent probe 6-lauroyl-2-dimethylamino naphthalene (Laurdan) indicated that the LA vesicle possessed a dehydrated surface, while the OA vesicle surface was hydrated. Modification of LA vesicles with DDAB induced the hydration of membrane surfaces, whereas modification of OA vesicles by DDAB had the opposite effect. DDA analysis indicated that the membrane surfaces were hydrated in the presence of DDAB, suggesting that the surface properties of FA vesicles are tunable by DDAB modification.


Nucleic Acids Research | 2011

Conformational change of single-stranded RNAs induced by liposome binding

Keishi Suga; Tomoyuki Tanabe; Hibiki Tomita; Toshinori Shimanouchi; Hiroshi Umakoshi

The interaction between single-stranded RNAs and liposomes was studied using UV, Fourier Transform Infrared spectroscopy (FTIR) and Circular Dichroism spectroscopy (CD). The effect of the surface characteristics of liposomes, which were composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and modified with cholesterol (Ch) or 1,2-dioleoyl-3-trimethylammonium propane (DOTAP), on the liposome–RNA interaction was investigated. The fluorescence of 6-(p-toluidino)naphthalene-2-sulfonate (TNS) embedded in the liposome surface (ε = 30–40) was decreased in the presence of tRNA, suggesting that single-stranded tRNA could bind onto the liposome. The dehydration of –PO2− –, guanine (G) and cytosine (C) of tRNA molecules in the presence of liposomes suggested both an electrostatic interaction (phosphate backbone of tRNA and trimethylammonium group of POPC, DOTAP) and a hydrophobic interaction (guanine or cytosine of tRNA and aliphatic tail of lipid). The tRNA conformation on the liposome was determined by CD spectroscopy. POPC/Ch (70/30) maintained tRNA conformation without any denaturation, while POPC/DOTAP(70/30) drastically denatured it. The mRNA translation was evaluated in an Escherichia coli cell-free translation system. POPC/Ch(70/30) enhanced expression of green fluorescent protein (GFP) (116%) while POPC/DOTAP(70/30) inhibited (37%), suggesting that the conformation of RNAs was closely related to the translation efficiency. Therefore, single-stranded RNAs could bind to liposomal membranes through electrostatic and hydrophobic attraction, after which conformational changes were induced depending on the liposome characteristics.


Analytical Chemistry | 2015

Membrane surface-enhanced Raman spectroscopy for sensitive detection of molecular behavior of lipid assemblies.

Keishi Suga; Tomohiro Yoshida; Haruyuki Ishii; Yukihiro Okamoto; Daisuke Nagao; Mikio Konno; Hiroshi Umakoshi

The dynamic properties of phospholipid (PL) membranes (phase state and phase transition) play crucial roles in biological systems. However, highly sensitive, direct analytical methods that shed light on the nature of lipids and their assemblies have not been developed to date. Here, we describe the analysis of PL-modified Au nanoparticles (Au@PL) using membrane surface-enhanced Raman spectroscopy (MSERS) and report the properties of the self-assembled PL membranes on the Au nanoparticle. The Raman intensity per PL concentration increased by 50-170 times with Au@PL, as compared to large unilamellar vesicles (LUVs) at the same PL concentration. The phase state and phase transition temperature of the PL membrane of Au@PL were investigated by analyzing the Raman peak ratio (R = I2882/I2930). The enhancement at 714 cm(-1) (EF(714)) varied with the hydrocarbon chain length of the PLs and the assembled degree of Au@PLs. In calculation, the EF(714),assembled was estimated to be 111-142 when the distance between AuNPs was 7.0-7.5 nm, which was correlated to the speculative enhancement factor, suggesting that the assembly of the Au@PLs contributed to the MSERS.


Biotechnology Journal | 2010

Liposomes destabilize tRNA during heat stress

Keishi Suga; Hiroshi Umakoshi; Hibiki Tomita; Tomoyuki Tanabe; Toshinori Shimanouchi; Ryoichi Kuboi

Biomembranes play an important role in cellular response to heat stress. In this study, we focus on the interaction between liposomes and tRNA. Upon heat treatment we determined circular dichroism spectra of tRNA in presence of liposomes prepared from POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and cholesterol (Ch). To compare thermal stability, midpoint temperature (T(m)) of tRNA was calculated from normalized theta(208). Addition of POPC/Ch liposomes decreased the T(m) value of tRNA from 48 degrees C to 38 degrees C. We conclude that POPC/Ch liposomes interact with tRNA and destabilize its conformation under heat stress.


Journal of Physical Chemistry B | 2016

Chiral Selective Adsorption of Ibuprofen on a Liposome Membrane

Yukihiro Okamoto; Yusuke Kishi; Takaaki Ishigami; Keishi Suga; Hiroshi Umakoshi

We investigated the key factors that affect enantioselective adsorption of ibuprofen (IBU) on a liposome membrane by changing its lipid composition: the liposome membrane shows different membrane fluidity, surface charge, content of chiral components, and heterogeneity (nanodomain). Nonspecific interactions (hydrophobic and electrostatic) were revealed to be an important factor in enhancing the adsorbed amount of IBU, based on adsorption experiments carried out using single lipids (DPPC, DMPC, DOPC, and DLPC) and positively charged liposomes (DOTAP and liposome containing DC-Ch). Furthermore, control of the boundary edge (i.e., the nanodomain size) derived from the membrane heterogeneity was important for enantioselective adsorption; as well as multiple weak interactions between lipid molecules and IBU enantiomers. The above findings provided a good index for constructing liposomal chiral adsorbents.


Journal of Physical Chemistry B | 2015

Pseudo-Interphase of Liposome Promotes 1,3-Dipolar Cycloaddition Reaction of Benzonitrile Oxide and N-Ethylmaleimide in Aqueous Solution.

Fumihiko Iwasaki; Keishi Suga; Hiroshi Umakoshi

The hydrophobic interior of a liposome membrane was used as a platform for the organic synthesis of hydrophobic compounds in water. The 1,3-dipolar cycloaddition of benzonitrile oxide (BNO) and N-ethylmaleimide (EMI) in liposome suspensions was carried out, and an increase in the reaction rate constant was observed depending on the liposome characteristics. While the reaction rate constant in 1,4-dioxane was 1.5 times higher than that in water, the reaction rate constant in an aqueous solution of cationic 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) liposome was 3 times higher than in water. The amount of substrate, BNO, accumulated in the DOTAP liposome was higher than that in 1,2-dipalmitoyl-3-trimethylammonium-propane (DPTAP), indicating that BNO prefers to be distributed in the liposome membrane in the liquid-disordered phase. The membrane polarity, GP340, as monitored by Laurdan, varied with the presence of BNO, while EMI slightly affected the membrane properties of the liposomes. These results suggest that the pseudo-interphase afforded by the liposome membrane can promote the 1,3-dipolar cycloaddition between BNO and EMI in water.


Langmuir | 2016

Roles of Sterol Derivatives in Regulating the Properties of Phospholipid Bilayer Systems

Tham Thi Bui; Keishi Suga; Hiroshi Umakoshi

Liposomes are considered an ideal biomimetic environment and are potential functional carriers for important molecules such as steroids and sterols. With respect to the regulation of self-assembly via sterol insertion, several pathways such as the sterol biosynthesis pathway are affected by the physicochemical properties of the membranes. However, the behavior of steroid or sterol molecules (except cholesterol (Chl)) in the self-assembled membranes has not been thoroughly investigated. In this study, to analyze the fundamental behavior of steroid molecules in fluid membranes, Chl, lanosterol, and ergosterol were used as representative sterols in order to clarify how they regulate the physicochemical properties of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes. Membrane properties such as surface membrane fluidity, hydrophobicity, surface membrane polarity, inner membrane polarity, and inner membrane fluidity were investigated using fluorescent probes, including 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene, 8-anilino-1-naphthalenesulfonic acid, 6-propionyl-2-(dimethylamino) naphthalene, 6-dodecanoyl-2-dimethylaminonaphthalene, and 1,6-diphenyl-1,3,5-hexatriene. The results indicated that each sterol derivative could regulate the membrane properties in different ways. Specifically, Chl successfully increased the packing of the DOPC/Chl membrane proportional to its concentration, and lanosterol and ergosterol showed lower efficiencies in ordering the membrane in hydrophobic regions. Given the different binding positions of the probes in the membranes, the differences in membrane properties reflected the relationship between sterol derivatives and their locations in the membrane.

Collaboration


Dive into the Keishi Suga's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keita Hayashi

National Archives and Records Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge