Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Keisuke Sekine is active.

Publication


Featured researches published by Keisuke Sekine.


Nature Genetics | 1999

Fgf10 is essential for limb and lung formation

Keisuke Sekine; Hideyo Ohuchi; Masanori Fujiwara; Masahiro Yamasaki; Tatsuya Yoshizawa; Takashi Sato; Naoko Yagishita; Daisuke Matsui; Yoshihiko Koga; Nobuyuki Itoh; Shigeaki Kato

The interactions between fibroblast growth factors (FGF) and their receptors have important roles in mediating mesenchymal-epithelial cell interactions during embryogenesis. In particular, Fgf10 is predicted to function as a regulator of brain, lung and limb development on the basis of its spatiotemporal expression pattern in the developing embryo. To define the role of Fgf10, we generated Fgf10-deficient mice. Fgf10-/- mice died at birth due to the lack of lung development. Trachea was formed, but subsequent pulmonary branching morphogenesis was disrupted. In addition, mutant mice had complete truncation of the fore- and hindlimbs. In Fgf10–/– embryos, limb bud formation was initiated but outgrowth of the limb buds did not occur; however, formation of the clavicles was not affected. Analysis of the expression of marker genes in the mutant limb buds indicated that the apical ectodermal ridge (AER) and the zone of polarizing activity (ZPA) did not form. Thus, we show here that Fgf10 serves as an essential regulator of lung and limb formation.


Nature | 2013

Vascularized and functional human liver from an iPSC-derived organ bud transplant

Takanori Takebe; Keisuke Sekine; M. Enomura; Hiroyuki Koike; Masaki Kimura; Takunori Ogaeri; Ran-Ran Zhang; Yasuharu Ueno; Yun-Wen Zheng; Naoto Koike; Shinsuke Aoyama; Yasuhisa Adachi; Hideki Taniguchi

A critical shortage of donor organs for treating end-stage organ failure highlights the urgent need for generating organs from human induced pluripotent stem cells (iPSCs). Despite many reports describing functional cell differentiation, no studies have succeeded in generating a three-dimensional vascularized organ such as liver. Here we show the generation of vascularized and functional human liver from human iPSCs by transplantation of liver buds created in vitro (iPSC-LBs). Specified hepatic cells (immature endodermal cells destined to track the hepatic cell fate) self-organized into three-dimensional iPSC-LBs by recapitulating organogenetic interactions between endothelial and mesenchymal cells. Immunostaining and gene-expression analyses revealed a resemblance between in vitro grown iPSC-LBs and in vivo liver buds. Human vasculatures in iPSC-LB transplants became functional by connecting to the host vessels within 48 hours. The formation of functional vasculatures stimulated the maturation of iPSC-LBs into tissue resembling the adult liver. Highly metabolic iPSC-derived tissue performed liver-specific functions such as protein production and human-specific drug metabolism without recipient liver replacement. Furthermore, mesenteric transplantation of iPSC-LBs rescued the drug-induced lethal liver failure model. To our knowledge, this is the first report demonstrating the generation of a functional human organ from pluripotent stem cells. Although efforts must ensue to translate these techniques to treatments for patients, this proof-of-concept demonstration of organ-bud transplantation provides a promising new approach to study regenerative medicine.


Nature Medicine | 2006

Impaired flow-dependent control of vascular tone and remodeling in P2X4-deficient mice

Kimiko Yamamoto; Takaaki Sokabe; Takahiro Matsumoto; Kimihiro Yoshimura; Masahiro Shibata; Norihiko Ohura; Toru Fukuda; Takashi Sato; Keisuke Sekine; Shigeaki Kato; Masashi Isshiki; Toshiro Fujita; Mikio Kobayashi; Koichi Kawamura; Hirotake Masuda; Akira Kamiya; Joji Ando

The structure and function of blood vessels adapt to environmental changes such as physical development and exercise. This phenomenon is based on the ability of the endothelial cells to sense and respond to blood flow; however, the underlying mechanisms remain unclear. Here we show that the ATP-gated P2X4 ion channel, expressed on endothelial cells and encoded by P2rx4 in mice, has a key role in the response of endothelial cells to changes in blood flow. P2rx4−/− mice do not have normal endothelial cell responses to flow, such as influx of Ca2+ and subsequent production of the potent vasodilator nitric oxide (NO). Additionally, vessel dilation induced by acute increases in blood flow is markedly suppressed in P2rx4−/− mice. Furthermore, P2rx4−/− mice have higher blood pressure and excrete smaller amounts of NO products in their urine than do wild-type mice. Moreover, no adaptive vascular remodeling, that is, a decrease in vessel size in response to a chronic decrease in blood flow, was observed in P2rx4−/− mice. Thus, endothelial P2X4 channels are crucial to flow-sensitive mechanisms that regulate blood pressure and vascular remodeling.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Suppressive function of androgen receptor in bone resorption.

Hirotaka Kawano; Takashi Sato; Takashi Yamada; Takahiro Matsumoto; Keisuke Sekine; Tomoyuki Watanabe; Takashi Nakamura; Toru Fukuda; Kimihiro Yoshimura; Tatsuya Yoshizawa; Ken-ichi Aihara; Yoko Yamamoto; Yuko Nakamichi; Daniel Metzger; Pierre Chambon; Kozo Nakamura; Hiroshi Kawaguchi; Shigeaki Kato

As locally converted estrogen from testicular testosterone contributes to apparent androgen activity, the physiological significance of androgen receptor (AR) function in the beneficial effects of androgens on skeletal tissues has remained unclear. We show here that inactivation of AR in mice using a Cre-loxP system-mediated gene-targeting technique caused bone loss in males but not in females. Histomorphometric analyses of 8-week-old male AR knockout (ARKO) mice showed high bone turnover with increased bone resorption that resulted in reduced trabecular and cortical bone mass without affecting bone shape. Bone loss in orchidectomized male ARKO mice was only partially prevented by treatment with aromatizable testosterone. Analysis of primary osteoblasts and osteoclasts from ARKO mice revealed that AR function was required for the suppressive effects of androgens on osteoclastogenesis supporting activity of osteoblasts but not on osteoclasts. Furthermore, expression of the receptor activator of NF-κB ligand (RANKL) gene, which encodes a major osteoclastogenesis inducer, was found to be up-regulated in osteoblasts from AR-deficient mice. Our results indicate that AR function is indispensable for male-type bone formation and remodeling.


Endocrinology | 1999

Stimulation of Osteoclast Formation by 1,25-Dihydroxyvitamin D Requires Its Binding to Vitamin D Receptor (VDR) in Osteoblastic Cells: Studies Using VDR Knockout Mice

Shu Takeda; Tatsuya Yoshizawa; Yumiko Nagai; Hideaki Yamato; Seiji Fukumoto; Keisuke Sekine; Shigeaki Kato; Toshio Matsumoto; Toshiro Fujita

Previous studies have shown that 1,25-dihydroxyvitamin D [1,25(OH)2D] plays important roles in the formation of osteoclasts through its actions on osteoblastic cells. We have generated mice lacking vitamin D receptor (VDR) by gene targeting (VDR-/-). These mice had tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts, and exhibited similar levels of parameters for bone resorption to those in wild type mice. The present studies were undertaken to clarify whether effects of 1,25(OH)2D on osteoclast formation require VDR in osteoblasts, and to examine mechanisms of the formation of osteoclasts without VDR-mediated actions using VDR-/- mice. When wild-type calvarial osteoblasts and spleen cells were co-cultured with 1,25(OH)2D, TRAP-positive osteoclasts were formed regardless of the genotypes of spleen cells. In contrast, when osteoblasts from VDR-/- mice were co-cultured, no osteoclasts could be formed even with wild-type spleen cells. Parathyroid hormone and interleukin-1alpha stimulated osteoclast formation by co-cultures from VDR-/- mice, and the generated osteoclasts showed resorbing activity. These results demonstrate that VDR-mediated actions of 1,25(OH)2D in osteoblasts are essential for osteoclast formation by 1,25(OH)2D, and that functionally intact osteoclasts can be formed without 1,25(OH)2D actions under stimulations by other agents. It is suggested that osteoclastic bone resorption can be maintained without 1,25(OH)2D actions by other stimulatory agents.


Nature Protocols | 2014

Generation of a vascularized and functional human liver from an iPSC-derived organ bud transplant

Takanori Takebe; Ran-Ran Zhang; Hiroyuki Koike; Masaki Kimura; Emi Yoshizawa; M. Enomura; Naoto Koike; Keisuke Sekine; Hideki Taniguchi

Generation of functional and vascularized organs from human induced pluripotent stem cells (iPSCs) will facilitate our understanding of human developmental biology and disease modeling, hopefully offering a drug-screening platform and providing novel therapies against end-stage organ failure. Here we describe a protocol for the in vitro generation of a 3D liver bud from human iPSC cultures and the monitoring of further hepatic maturation after transplantation at various ectopic sites. iPSC-derived specified hepatic cells are dissociated and suspended with endothelial cells and mesenchymal stem cells. These mixed cells are then plated onto a presolidified matrix, and they form a 3D spherical tissue mass termed a liver bud (iPSC-LB) in 1–2 d. To facilitate additional maturation, 4-d-old iPSC-LBs are transplanted in the immunodeficient mouse. Live imaging has identified functional blood perfusion into the preformed human vascular networks. Functional analyses show the appearance of multiple hepatic functions in a chronological manner in vivo.


Journal of Biological Chemistry | 2007

TRB2, a Mouse Tribbles Ortholog, Suppresses Adipocyte Differentiation by Inhibiting AKT and C/EBPβ

Takahiro Naiki; Eiko Saijou; Yuichiro Miyaoka; Keisuke Sekine; Atsushi Miyajima

Adipocyte differentiation is regulated by a complex array of extracelluar signals, intracellular mediators and transcription factors. Here we describe suppression of adipocyte differentiation by TRBs, mammalian orthologs of Drosophila Tribbles. Whereas all the three TRBs were expressed in 3T3-L1 preadipocytes, TRB2 and TRB3, but not TRB1, were immediately down-regulated by differentiation stimuli. Forced expression of TRB2 and TRB3 inhibited adipocyte differentiation at an early stage. Akt activation is a key event in adipogenesis and was severely inhibited by TRB3 in 3T3-L1 cells. However, the inhibition by TRB2 was mild compared with severe inhibition by TRB3, though TRB2 suppressed adipogenesis as strongly as TRB3. Interestingly, TRB2 but not TRB3 reduced the level of C/EBPβ, a transcription factor required for an early stage of adipogenesis, through a proteasome-dependent mechanism. Furthermore, knockdown of endogenous TRB2 by siRNA allowed 3T3-L1 cells to differentiate without full differentiation stimuli. These results suggest that inhibition of Akt activation in combination with degradation of C/EBPβ is the basis for the strong inhibitory effect of TRB2 on adipogenesis.


The Journal of Steroid Biochemistry and Molecular Biology | 1999

In vivo function of VDR in gene expression-VDR knock-out mice

Shigeaki Kato; Ken– Ichi Takeyama; Sachiko Kitanaka; Akiko Murayama; Keisuke Sekine; Tatsuya Yoshizawa

Vitamin D exerts many biological actions through nuclear vitamin D receptor (VDR)-mediated gene expression. The transactivation function of VDR is activated by binding 1alpha,25-dihydroxyvitamin D3[1alpha,25(OH)2D3], an active form of vitamin D. Conversion from 25(OH)D3 is finely regulated in kidney by 25(OH)D3 1alpha-hydroxylase[25(OH)D 1alpha-hydroxylase], keeping serum levels of 1alpha,25(OH)2D3 constant. Deficiency of vitamin D and mutations in the genes like VDR (type II genetic rickets) are known to cause rickets like lowered serum calcium, alopecia and impaired bone formation. However, the molecular basis of vitamin D VDR system in the vitamin D action in intact animals remained to be established. In addition, the 1alpha-hydroxylase gene from any species had not yet been cloned, irrespective of its biological significance and putative link to the type I genetic rickets. We generated VDR-deficient mice (VDR KO mice). VDR KO mice grew up normally until weaning, but after weaning they developed abnormality like the type II rickets patients. These results demonstrated indispensability of vitamin D-VDR system in mineral and bone metabolism only in post-weaning life. Using a newly developed cloning system, we cloned the cDNA encoding a novel P450 enzyme, mouse and human 1alpha-hydroxylase. The study in VDR KO mice demonstrated the function of liganded VDR in the negative feed-back regulation of 1alpha,25(OH)2D3 production. Finally, from the analysis of type I rickets patients, we found missense genetic mutations in 1alpha-hydroxylase, leading to the conclusion that this gene is responsible for the type I rickets.


The EMBO Journal | 2007

Foxo1 links insulin signaling to C/EBPα and regulates gluconeogenesis during liver development

Keisuke Sekine; Yen-Rong Chen; Nobuhiko Kojima; Kazuhiro Ogata; Akiyoshi Fukamizu; Atsushi Miyajima

C/EBPα is a key transcription factor indispensable for the onset of gluconeogenesis in perinatal liver. However, C/EBPα was already expressed in fetal liver, suggesting that the expression of C/EBPα alone does not account for the dramatic increase of the expression of metabolic genes, and hence an additional factor(s) is expected to function cooperatively with C/EBPα in perinatal liver. We show here that expression of Foxo1 was sharply increased in the perinatal liver and augmented C/EBPα‐dependent transcription. Foxo1 bound C/EBPα via its forkhead domain, and Foxo1 bound to the promoter of a gluconeogenic gene, phosphoenolpyruvate carboxykinase (PEPCK), in a C/EBPα‐dependent manner in vivo. Insulin inhibited the expression of PEPCK in a culture of fetal liver cells, and also the C/EBPα‐dependent transcription enhanced by Foxo1. These results indicate that Foxo1 regulates gluconeogenesis cooperatively with C/EBPα, and also links insulin signaling to C/EBPα during liver development.


Nature | 2017

Multilineage communication regulates human liver bud development from pluripotency

J. Gray Camp; Keisuke Sekine; Tobias Gerber; Henry Loeffler-Wirth; Hans Binder; Malgorzata Gac; Sabina Kanton; Jorge Kageyama; Georg Damm; Daniel Seehofer; Lenka Belicova; Marc Bickle; Rico Barsacchi; Ryo Okuda; Emi Yoshizawa; Masaki Kimura; Hiroaki Ayabe; Hideki Taniguchi; Takanori Takebe; Barbara Treutlein

Conventional two-dimensional differentiation from pluripotency fails to recapitulate cell interactions occurring during organogenesis. Three-dimensional organoids generate complex organ-like tissues; however, it is unclear how heterotypic interactions affect lineage identity. Here we use single-cell RNA sequencing to reconstruct hepatocyte-like lineage progression from pluripotency in two-dimensional culture. We then derive three-dimensional liver bud organoids by reconstituting hepatic, stromal, and endothelial interactions, and deconstruct heterogeneity during liver bud development. We find that liver bud hepatoblasts diverge from the two-dimensional lineage, and express epithelial migration signatures characteristic of organ budding. We benchmark three-dimensional liver buds against fetal and adult human liver single-cell RNA sequencing data, and find a striking correspondence between the three-dimensional liver bud and fetal liver cells. We use a receptor–ligand pairing analysis and a high-throughput inhibitor assay to interrogate signalling in liver buds, and show that vascular endothelial growth factor (VEGF) crosstalk potentiates endothelial network formation and hepatoblast differentiation. Our molecular dissection reveals interlineage communication regulating organoid development, and illuminates previously inaccessible aspects of human liver development.

Collaboration


Dive into the Keisuke Sekine's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yasuharu Ueno

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Yun-Wen Zheng

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroyuki Koike

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Ran-Ran Zhang

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

M. Enomura

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge